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ABSTRACT

The brain has a complex structure and is located at the center of the nervous system. At the
cellular level, the nervous system has neurons that send signals rapidly and precisely to other
cells. Dynamical features of neurons, bursting synchronization and desynchronization, in a neu-
ral network can not only be associated with memory and consciousness, but also be related to
unhealthy neural behaviors. To regulate abnormal neural activities, for instance, in patients with
neurological disorders, such as epilepsy, Alzheimer’s, and Parkinson’s diseases, external pulsed
currents, such as deep brain stimulation, can influence the bursting synchronous behavior in a
neural network and cause alterations in neural spiking activities. Throughout this thesis, the
main goals are to demonstrate the emergence of bursting synchronization and desynchroniza-
tion in two different neural networks, and also to show the effect of external periodic and random
pulsed currents on neural activities related to pathological synchronous behavior in these neu-
ral networks. Firstly, a neural network model containing Rulkov’s neurons connected by means
of a random structure, Erdös-Rényi model, is built. The formation and destruction of bursting
synchronization in a random neural network model with burst-timing-dependent plasticity are
investigated. We study the effect of two external pulsed currents, periodic and random pulses,
on bursting synchronization in a plastic neural network. Secondly, a neural network composed
of coupled subnetworks with small-world properties according to one human cerebral cortex,
limbic system, and brain stem is considered. The burst synchronization and desynchronization
in the network under external periodic and random pulsed perturbations are studied. Overall,
the results of this thesis show that the burst-timing-dependent plasticity and the synaptic inter-
action between presynaptic and postsynaptic neurons can exhibit the formation and destruction
of bursting neural synchronization in network models. The external pulsed currents can be an
effective method to suppress bursting neural synchronization in neural networks.
Keywords: Neural Network, Bursting Synchronization, Desynchronization, External Pulsed
Currents, Plasticity.



RESUMO

O cérebro é uma estrutura complexa que está localizado no centro do sistema nervoso. No
nível celular, o sistema nervoso possui neurônios que enviam sinais de forma rápida e precisa
para outras células. As características dinâmicas dos neurônios, sincronização e dessincroni-
zação intermitentes, em uma rede neural, podem não apenas estar associadas à memória e à
consciência, mas também estar relacionadas a comportamentos neurais prejudiciais. Para regu-
lar atividades neurais anormais, por exemplo, em pacientes com distúrbios neurológicos, como
epilepsia, Alzheimer e Parkinson, correntes pulsadas externas, como estimulação cerebral pro-
funda, podem influenciar o comportamento síncrono de disparos em uma rede neural. Ao longo
desta tese, os principais objetivos são demonstrar o surgimento de sincronização e dessincro-
nização dos disparos em duas redes neurais diferentes. Também mostrar o efeito de correntes
externas periódicas e pulsadas aleatórias em atividades neurais relacionadas ao comportamento
síncrono patológico nessas redes neurais. Primeiramente, um modelo de rede neural contendo
os neurônios de Rulkov conectados por meio de uma estrutura aleatória, modelo Erdös-Rényi, é
construído. Nesta rede estudamos a influência da plasticidade dependente do tempo nos disparos
neuronais, bem como os efeitos de correntes pulsadas externas, pulsos periódicos e aleatórios
na sincronização. Na sequência, analisamos uma rede neural composta de sub-redes acopladas
com propriedades de mundo pequeno de acordo com o córtex cerebral humano, sistema límbico
e tronco cerebral. Em geral, os resultados desta tese mostram que a plasticidade dependente do
tempo e a interação sináptica entre neurônios pré-sinápticos e pós-sinápticos contribuem para
a formação e destruição de sincronização neural, bem como que as correntes pulsadas externas
podem ser eficazes para suprimir a sincronização em redes neurais.
Palavras-chave: Rede Neural, Sincronização, Dessincronização, Correntes Pulsadas Externas,
Plasticidade.
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1 INTRODUCTION

Synchronization is a phenomenon that occurs in many systems in the nature (1). In the 17th
century, this phenomenon was recognized by Christiaan Huygens when two weakly coupled
pendulum clocks synchronized in-phase (2). After that, this phenomenon was reported in a wide
range of biological systems (3–5), in the rhythmic flashing of fireflies (6), in the crickets which
synchronize their chirps by responding to the preceding chirp of their neighbors (7), and also in
the action potentials of the nervous system (8,9). In the context of neuroscience, synchronization
plays a key role for temporal coordination of neural activity in neural networks (8). Also, various
researches have reported the importance of synchronization for performing cognitive functions
(10, 11), such as memory (8), conscious perception (12, 13), and motor coordination (14), as
well as in processing and binding information in the mammalian brain (15). However, abnormal
levels of synchronization have been associated with unhealthy neural behaviors (16). A high
degree of synchronization is observed in epileptic seizures (17), where seizure episodes are
generated by an increase in the synchronization of some groups of neurons, and in Parkinson’s
disease, where there is an excessive synchronization in basal ganglia (18, 19). Reduced levels
of synchronization among cortical areas can be found in brain disorders such as autism (20)
and Alzheimer’s disease (21). Due to this fact, there is a great interest in understanding the
factors that may contribute to the emergence of synchronization and desynchronization in neural
networks.

The brain is one of the most important organs in the body that is located at the centre of the
nervous system (22). The nervous system is responsible for receiving stimuli from sensory re-
ceptors and sends them to the brain and spinal cord, as well as to conduct impulses back to other
parts of the body (23). At the cellular level, the nervous system has approximately 100 billion
neurons. The neurons are connected to each other by axons to form a neural network and send
signals rapidly and precisely to other cells (24). The signals are sent in the form of electrochem-
ical impulses through different mechanisms by means of synapses (25). The synapses within
the brain can be divided into two general classes: electrical synapses and chemical synapses.
The chemical synapses can be excitatory or inhibitory. Smith and Perede (26) demonstrated that
chemical synaptic activity modulates nearby electrical synapses. They provided evidence that
chemical transmission interacts with electrical synapses to regulate the conductance. Kopell and
Ermentrout (27) reported that chemical and electrical synapses perform complementary roles in
the synchronous behavior of neural networks.

Each node in a neural network can be described by amap-basedmodel like the Rulkovmodel,
which is a two-dimensional iterated map proposed by Nikolai F. Rulkov (28). The Rulkov map
is able to display a variety of dynamical regimes, as well as to produce irregular bursts which are
observed in individual neurons through neurobiological experiments. It has been considered in a
variety of studies, such as phase synchronization in clustered networks (29), suppression of burst
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synchronization (30) and control of bursting synchronization (31). The Rulkov’s neurons can be
connected to each other by means of a random structure introduced by Erdös-Rényi (32) or of
a small-world network (33, 34). In the random network, the nodes are randomly connected by
means of a pre-determined connection probability. Watts and Strogatz (33) introduced small-
world networks. A small-world graph exhibits a high degree of clustering as in the regular
networks, where all nodes have the same number of neighbors, and also has a small average
distance between the nodes as in the random networks. In the small-world networks introduced
byWatts and Strogatz, non-local links are inserted by randomly rewiring some local connections
into non-local ones (33), while randomly selected shortcuts are added in a regular lattice by
Newman and Watts (34). In the brain, the connections between neurons are local (connections
with their nearest neighbors) and non-local (long range connections) (35, 36). The topological
properties of small-world ensure the efficient generation and integration of information in the
brain (37). Small-world networks have been proposed to be an efficient solution for achieving
phase synchronization of bursting neurons (29). It has been observed that small-world networks
can exhibit synchronous behavior with fewer connections than networks with all-to-all coupling
(38). Small-world properties were identified in the nematode Caenorhabditis elegans that has
2462 synaptic connections among each one of the 282 neurons (39).

The neurons connected to each other form a large layered neural network in which the differ-
ent cortical layers have particular distributions of neural cell types, as well as have connections
with other cortical and sub-cortical regions and non-cortical nucle (40, 41). Each discrete area
of the brain is described as a subnetwork exhibiting small-world properties (42), which are a
high degree of clustering and a small averaged distance between vertices (nodes) (43). Subnet-
works appear in the brain and they interact with each other during task accomplishing. Xu et
al. (44) demonstrated that multiple cognitive processes may be related to common brain regions
during cognitive tasks. Neural synchronization has been observed in the brain during different
tasks (45). Jiang et al. (46) showed results in which the synchronization increases in the left in-
ferior frontal cortex during a face-to-face dialogue. Furthermore, the combination of short path
length and high clustering makes the small-world topology an attractive model for the studies
about the connectivity of the nervous system (37,47). Scannell et al. investigated the anatomical
connectivity matrix of the visual cortex for the macaque monkey and the cat. They found that
the values of the average path length and clustering coefficient are in accordance with expected
small-world properties (48, 49). Hilgetag et al. (50) demonstrated that small-world network
characteristics can be observed in cortical connectivity matrices from cat and macaque monkey
brains. Moreover, there have been studies of large-scale anatomical connection patterns of the
human cortex using cortical thickness measurements from magnetic resonance imaging (51).
Sun et al. (52) explored burst synchronization transitions in a neural network of subnetworks.
They showed the effects of intra and intercoupling strength on the burst synchronization. Lameu
et al. (53) studied coupled small-world networks according to the cat cerebral cortex. They
reported an emergence of bursting synchronization among neurons within the visual, somato-
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sensory-motor, and frontolimbic cognitive regions, except for the auditory area. Therefore, a
network of small-world networks has been used to analyze phase synchronization of bursting
neurons (29).

The brain can modify its organization and function throughout the life. This ability is known
as neuroplasticity and can occur in response to stimuli or injury (54). Regarding the various re-
searches in the past century, neural plasticity is an essential feature of nervous systems in living
organisms from insects to humans. The existence of changes in the brain functions was proposed
by James (55) in 1890. In the late 1800s, Cajal (56) used the term plasticity to describe brain
adaptation due to the environment. Alterations in neural pathways were observed in experiments
performed in 1923 by Lashley (57). Hebb (58) in 1949 postulated that the synapse between two
neurons is potentiated when they are active at the same time. Two decades after the Hebb’s rule,
experimental results about the potentiation were found in the rabbit hippocampus (59). In the
context of neuroplasticity, mathematical models of networks have been considered to mimic ef-
fects of plasticity in synchronous behavior and its transition in neural networks (60). Popovych
et al. (61) studied the noise dependency of synchronous behavior in a neural network model with
spike-timing-dependent plasticity (STDP). Borges et al. (62–64) reported that STDP can induce
non-trivial topology in the brain and that the direction of the synapses containing high and low
frequency neurons changes by the STDP according to the Hebbian rules. Another type of neuro-
plasticity is the burst-timing-dependent plasticity (BTDP) (65), that induces synaptic alteration
according to the timing of bursts. Wang et al. (66) found the coexistence of coherent and in-
coherent dynamics, known as chimera states, in an adaptive neural network with BTDP. They
built a network of coupled two-variable integrate-and-fire model of Izhikevich. It was shown
that the BTDP is able to lead static networks to different behaviors. Considering BTDP related
to spontaneous retinal activity, Gjorgjieva et al. (67) performed simulations with the nonlinear
integrate-and-fire model to compare results with the linear model. Recently, Silveira et al. (68)
considered BTDP to analyze its effects on synchronous behavior in neural networks, such as
small-world and random networks. Bursting synchronization can be induced by neuroplasticity,
as well as by a Gaussian white noise applied in the plastic network.

Furthermore, external pulsed currents introduced in (69) cause alterations in neuron spiking
activities, influence the bursting synchronous behavior in a neural network, and also can the-
oretically describe deep brain stimulation (DBS), which can be used to treat and control some
neurological conditions, such as Alzheimer’s and Parkinson’s diseases. The DBS consists of
electrodes implanted in the brain, generating electrical impulses to regulate abnormal neural
activities, for instance, in patients with epilepsy. Experimental evidences have been demon-
strated that pulsed current stimulation can increase cerebral plasticity and improve the locomo-
tor function (70). Jaberzadeh et al. (71) analyzed the effects of pulsed current stimulation on
corticospinal excitability. Boareto et al. (72) considered different protocols applying pulsed cur-
rents to suppress phase synchronization in scale-free neural networks. Hansen et al. (73) studied
the dynamics of uncoupled and random coupled Hodgkin-Huxley neurons under periodic, ran-
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dom, and mixed external perturbations. It was shown that external pulsed currents are able to
change synchronous behavior of coupled neurons. Lameu et al. (53) studied coupled small-world
network according to the cat cerebral cortex. Without external perturbations, they showed an
emergence of bursting synchronization among neurons within the visual, somatosensory-motor,
and frontolimbic cognitive regions, except for the auditory area, while burst synchronization
appeared in the auditory area when some perturbations were applied in the visual area.

Given this context, this thesis aims to understand the effect of external pulsed perturbations,
periodic and random pulses, on bursting neural synchronization in two different neural networks,
one influenced by burst-timing-dependent plasticity (BTDP) and another one built according to
the structural connectivity matrix of a healthy human brain. This objective can be divided into
two independent research areas, described as:

Research Area 1:
• To build a neural network model containing Rulkov’s neurons, which are connected to

each other by means of a random structure, Erdös-Rényi model;
• To investigate the formation and destruction of bursting synchronization in the random

neural network model in which the dynamics are influenced by burst-timing-dependent
plasticity;

• To study the effect of two external pulsed currents on bursting synchronization in the
plastic neural network.

Research Area II:
• To build a neural network model composed of coupled subnetworks with small-world

characteristics according to one human cerebral cortex, limbic system, and brain stem;
• To study the effect of two external perturbations, periodic and random pulses, on bursting

synchronization in the neural network designed in which the neurons are modelled by the
Rulkov map.

The Research Area 1 and 2 have been published in The European Physical Journal Special
Topics and in Chaos: An Interdisciplinary Journal of Nonlinear Science, respectively. This
thesis is divided into four chapters. The first chapter is devoted to introducing all the theoretical
frameworks used in this work. In Chapter 3, as Research Area 1, it is investigated the effect of
burst-timing-dependent plasticity and external pulsed perturbations on bursting synchronization
in the neural network containing Rulkov’s neurons, which are connected to each other by means
of a random structure. In Chapter 4, as Research Area 2, is studied the burst synchronization
and desynchronization in a neural network model composed of 83 subnetworks available in both
hemispheres of a human brain. The periodic and random pulses are applied to investigate how
such perturbations influence the neural synchronization in the network. At last, the conclusions
based on the results and also future perspectives are presented in Chapter 5.
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2 BASIC CONCEPTS

This chapter presents basic concepts related to neural network models, such as the neuron
and its main components; the states of neural membrane potential, as well as the mechanisms
involved in the evolution of its value; and the way in which the neurons commonly communicate,
through synapses. In addition, the model proposed by Nikolai F. Rulkov (28), in which, with two
discrete equations, the dynamics of the action potential observed in biological neurons can be
reproduced, is described. This model is used to describe the dynamics of the neural networks of
the present work. After that, it is introduced some concepts of the graph theory, which are used
in the networks study. The way that the connections are distributed characterizes the network
connection topology. In this thesis, all the networks were generated using a Python language
package called “NetworkX” (74) which was developed for exploration and analysis of networks
and network algorithms. Furthermore, it is introduced some concepts of the synchronization of
dynamic systems, based on the Kuramoto oscillator model. In particular, it is considered as a
powerful tool to quantify phase synchronization, called the Kuramoto order parameter, which
can be generalized to measure phase synchronization of neural models (5). lastly, the external
pulsed perturbations, which can be periodic or random pulses, are explained to theoretically
describe deep brain stimulation (DBS), as a neurosurgical procedure.

2.1 NEURON, ACTION POTENTIAL AND SYNAPSES

Neurons, also called nerve cells, are the main cells of the brain and the nervous system that
are responsible for receiving sensory input from the external world, for sendingmotor commands
to our muscles and for transforming and relaying the electrical signals at every step in between
(23). Although there are about 100 different types of neurons (75), each with its own anatomical
and functional characteristics (76), the vast majority of neurons have the same basic structure
(77). The neuron can be divided into three main parts: cell body, also known as soma, which
contains the nucleus; dendrites, whose main function is the reception of signals which come
from other neurons; axon, which carries the signals from the soma to other neurons and has many
branches called axon terminals (16, 78, 79) (as shown in Fig. 2.1). In general, the dendrites are
short, while the axon can be about one meter long (80). The cell body along with the dendrites
are responsible for the reception and integration of stimuli that reaches the cell (81).

The main function of neuron is the transmission of action potentials, which are electrical
signals propagating information at the nervous system. The action potential consists of a depo-
larization followed by repolarization, showing a spike shape. These variations at the membrane
potential occur due to the variations of the ion concentrations between the intracellular and ex-
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Figure 2.1: Basic anatomy of a neuron. A typical neuron can be separated into three basic
regions: the soma including nucleus, dendrites and axon including axon terminals (16).
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Source: Adapted from (82).

Figure 2.2: Cell membrane representation. The cell membrane contains proteins functioning as
channels that allow the ions to move through it. The ion flux changes the concentration of the
intracellular and extracellular sides, inducing variations in the membrane potential.
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tracellular media. In this sense, the membrane potential can be described as

P (t) = Pint − Pext, (2.1)

where Pint and Pext are the potentials of the intracellular and extracellular media, respectively.
The ions permeate the neural membrane by proteins working as ion channels. There are

gated and non-gated ion channels. Non-gated channels are always open, allowing the entrance
and exit of ions from the intracellular side, while gated channels depend on potential, meaning
that the permissiveness of the channels depends directly on the potential of the membrane. The
predominant ions found on both sides of the cell membrane are potassium (K+), sodium (Na+),
and chlorine (Cl−) ions. One representation of the ionic channels is displayed in Fig. 2.2, where
one channel is open allowing the exit of aK+ ion, another one is closed and a non-gated channel
allows the entrance of a Cl− ion.

At the equilibrium point, also called the resting state, there are no ionic changes between
the media. In this case, the intracellular side contains in majority K+ ions, whileNa+ and Cl−
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Figure 2.3: Typical action potential of the neuron, identifying the resting state, depolarization,
repolarization, and hyperpolarization. The threshold potential is indicated by the dashed line.
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ions are more abundant in the extracellular side (83). The membrane potential is determined
primarily by the K+ resting potential given as

P (t) = Pint − Pext = Prest ≈ −70mV . (2.2)

When the neuron is stimulated above a threshold (−50mV ), the Na+ channels allow the
entrance of ions inside the cell. This influx ofNa+ ions tends to depolarize the cell that results
in a positive variation in P (t). This sudden increase of P inverts the polarity of the cell, closing
theNa+ ion channels and opening the K+ ion channels, to allow the efflux of K+ ions in order
to repolarize the cell. This action takes the membrane potential to a level below the Pres and
then occurs hyperpolarization. Until theK+ channels close again, the membrane is in a resistant
stage. During this time, the cell exchanges excessNa+ ions inside the cell with excess K+ ions
outside the cell, and the stimulus is maintained if a new cycle can be started (83). Figure 2.3
exhibits the variant states of a typical neural action potential.

The brain consists of approximately 1011 neural cells interconnecting by 1015 junctions called
synapses to create groups of connected neurons divided into brain regions, each with specific
functions (16). The synapses generally consist of three components: the axon terminals of a
presynaptic neuron, a target on a postsynaptic neuron, and a connection zone between both
neurons called synaptic cleft. The structure of the zone determines the type of the synapse, which
can be electrical or chemical synapse (85). The synapses are responsible for carrying electrical
signals initiated from the presynaptic neuron and propagated within the postsynaptic neuron
through electrical and chemical synapses, as a result of the difference in electrical potential
between the exterior and the interior of the neuron (16). Most synapses are chemical; these
synapses communicate by means of chemical messengers, while other synapses are electrical;
in these synapses, ions flow directly between cells (81). In other words, the electrical signals are
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Figure 2.4: Schematic representation of the (a) chemical and (b) electrical synapses.
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Source: Adapted from (86).

action potentials, which transmit the information from a neuron to the other, while the chemical
signals are neurotransmitters, which transmit the information from one neuron to the next. Figure
2.4 schematically shows the (a) chemical and (b) electrical synapses.

The electrical synapses are characterized by a direct interaction among ions of the two cells,
where the presynaptic axon terminal and the postsynaptic cell are very close through the regions
called gap junctions. The signal produced by the action potential of the presynaptic neuron
reaches the postsynaptic neuron at a gap junction connecting both neurons (16). In this sense,
the postsynaptic neuron receives a synaptic current defined as

Isyn = Csyn(Ppre − Ppost), (2.3)

where Csyn represents the conductance of the channels, and Ppre and Ppost are the membrane
potentials of the presynaptic and postsynaptic neurons, respectively.

In the chemical synapses, the connections do not occur directly. The action potential of
the presynaptic neuron releases neurotransmitters, such as glutamate and -Aminobutyric acid
(GABA) in cortical neurons (83). These neurotransmitters diffuse through the synaptic cleft to
reach the postsynaptic neuron through opening or closing ion channels. For these cases, the
synaptic current is described by

Isyn = Csynf (t)(Rsyn − Ppost), (2.4)

where f (t) is a function that simulates the neurotransmitter kinetics, and Rsyn is the reversal
synaptic potential which signifies if the synapse is inhibitory or excitatory. Inhibitory synapses
decrease the likelihood of a postsynaptic action potential and the neural activity, while excitatory
ones increase this likelihood and the neuron activity (87). Gamma-aminobutyric acid (GABA),
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glycine and serotonin are examples of inhibitory neurotransmitters, while excitatory neurotrans-
mitters include glutamate, epinephrine and norepinephrine. A way of modeling f (t) is done by
considering a sigmoidal function (83)

f (t) = 1
1 + exp(−�s(Ppre(t) − �s))

, (2.5)

where �s and �s are constants related to chemical synapses, adjusted for the respective neural
model. Another way to model f (t) is with a kinetic function, which takes into account the
fraction of open channels that allow the transmission of neurotransmitters,

df
dt

= ( 1
�f
− 1
�d
)

1 − f
1 + exp[−s0(Ppre(t) − R0)]

−
f
�d
, (2.6)

in which �f and �d are characteristic times, s0 = 1∕mV is a unitary constant, andR0 is a reversal
potential (87).

2.2 NURON MODEL

Map-based models, such as Rulkov model, have been used to mimic neural behaviors as
observed in biological neurons (88). The Rulkov model is a two-dimensional iterated map that
is capable of restructioning neural collective behavior and producing silent, tonic and spiking-
bursting behaviors similar to those observed in individual neurons through neurobiological ex-
periments. The low-dimensionality of this map allows to study large neural networks. Recently,
the model has widely been used, due to the fact that it reduces the calculations of large neural
networks and is easier and faster to compute than differential equations (73). Each node in a neu-
ral network can be described by the Rulkov map proposed by Nikolai F. Rulkov (28) in 2001.
The Rulkov model containing two fast and slow variables is given by

xt+1 =
�

1 + x2t
+ yt, (2.7)

yt+1 = yt − �(xt − �), (2.8)

where xt represents the membrane potential of the neuron and is considered as the fast variable
at the discrete time t and yt denotes the slow variable at the discrete time t. Variable yt, unlike
variable xt, does not have a biological meaning (28). The variables xt and yt are randomly
selected from [−2, 2] and [−4, 0], respectively. � is a control parameter that can affect the spiking
time-scale and values in that the time series of xt presents an irregular sequence of spikes. Then,
this parameter is selected in the interval � > 4, due to the fact that the chaotic bursts are observed
in this range. The parameters � and � describe the slow time-scale. The variable yt is small due
to the external influences of 0 < � ≪ 1 and 0 < � ≪ 1. Various combinations of both � and
� can be useful to describe different dynamical behaviors of the neurons, such as resting, tonic
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Figure 2.5: Time evolution of (a) the fast variable (xt) and (b) the slow variable (yt), wherethe red circles correspond to the bursting beginning. x0 and y0 are randomly selected from the
interval [−2, 2] and [−4, 0], respectively, � = 4.1, � = 0.001, and � = 0.001.
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spiking, and chaotic bursts. The time series of the fast and slow variables and the maximum
values of the slow variable are displayed in Fig. 2.5.

Figures 2.6(a) and 2.6(b) display the regimes of relaxation oscillations and pieces of spikes
with amplitude decreasing, respectively. In Figs. 2.6(c) and 2.6(d), the Rulkov map exhibits
bursting behavior and the red circles denote the maximum value of the slow variable yk. The
chaotic bursts are observed for � > 4.

2.3 GRAPH THEORY AND COMPLEX NETWORKS

The graph theory developed in part by Leonard Euler (89) is a section of discretemathematics
to solve the challenge of the Königsberg bridges. When passing through the city of Königsberg,
the Pregel River creates two islands connected to the city by seven bridges. The challenge,
regardless of where the journey started or ended, was to cross all the bridges without repeating.
Figure 2.7 illustrates one adaptation of the original illustration of the challenge made by Euler
(90). To solve this challenge, the idea was to represent each area and the bridges as sites linked
by edges. Since all the regions had an odd number of bridges, therefore, there was no solution
for this challenge. To solve it, it was necessary to remove each of the bridges. The way in that
Euler obtained his results was considered as a starting point for the study of graph theory (91).

A graph G consists of a finite set of nodes (or vertices),N , connected by links called edges
(or connections), E, (90). N is a non-empty discrete set of nodes, and E is a subset constituted
of ordered pair of N elements. For two nodes, the pair (ni, nj) ∈ E is a line which connects
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Figure 2.6: Time evolution of the fast variable xk for (a) � = 2.3, (b) � = 3.0, (c) � = 4.1, and(d) � = 4.5. The red circles show the maximum value of the slow variable yk. x0 and y0 arerandomly selected from the interval [−2, 2] and [−4, 0], respectively, � = 0.001 and � = 0.001.

Source: The author.

Figure 2.7: Illustration of the Königsberg bridges. The Pregel River ramifications form two
islands A and D, which are connected to the city by the 7 bridges a, b, c, d, e, f , and g.
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the neurons ni and nj . The connections between nodes can be binary or weighted: for a binary
connection, if the nodes are connected, (ni, nj) = 1; or otherwise 0 for a weighted one, when
some connections are more relevant than others. On the other hand, the connections can be
directed and non-directed: in a non-directed connection, the connections are reciprocal which
means that, if ni is connected to nj , it implies that nj is connected to ni; in a directed one, the
connections are not reciprocal. The notation G(N,E) represents a graph with N nodes and E
connections. The graph G can be represented as a squared matrix, N × N , also known as a
connection matrix, where N is the number of rows and columns, and E is the number of non-
zero elements. In the matrix, zero and non-zero elements indicate the absence and presence of
a relationship between the nodes of a network, respectively.



22

The graph theory can be used in the study of networks, in particular, neural networks, by
considering each node of the network as a neuron and their connections as the synapses. The
global behavior of a group of connected entities is studied by means of a complex network. The
network topology that plays a key role in the global dynamics of the network depends on how
the connections are distributed in the network (92). In this sense, the topology of the network
containing N as the size of the network and E as the number of connections is classified using
some topological measurements, such as average shortest path length and clustering coefficient.

The average shortest path length, ASPL, also known as average path length, as a concept
in the network topology is described by the average number of edges along the shortest paths
for all possible pairs of nodes in the graph (93). It measures the efficiency of information or
mass transport on a graph. The average path length as a measure of the average number of edges
transmitted from one node to another in the network is defined by

ASPL = 1
N(N − 1)

N
∑

i=1

N
∑

j=1
d(ni, nj), (2.9)

where d(ni, nj) denotes the shortest distance between two nodes ni and nj , andN is the number
of nodes.

The clustering coefficient, CC, measures the degree indicating the tendency of nodes in a
graph to cluster together (94). When the graph is more complete, meaning that the connections
are dense, the clustering coefficient is high. In fact, it is a sign of triadic closure because the more
complete the graph is, the more triangles will usually arise (95). Then, the clustering coefficient
CC for each node i, CC(i), is defined by

CC(i) =
2k(i)

m(i)(m(i) − 1)
, (2.10)

where k(i) andm(i) represent the number of edges among the neighbors of node i and the degree
of node i, respectively. In fact, clustering coefficient gives a measure of modularity of the net-
work. When the clustering coefficient is 1, it means that the neighborhood of the node is fully
connected and a value close to 0, when there are almost no connections in the neighborhood.

Some graph generators, such as regular, random (without structure), and small-world net-
work models, to describe different network topologies are explained as follows. A regular net-
work is the simplest network topology in which all the nodes have the same number of neighbors
as edges, meaning that the i-th node is connected to its closest neighbors. Figure 2.8 shows an
example of the three regular networks withN = 10 nodes.

Another topology is the random network topology, where the the nodes are randomly con-
nected by means of a pre-determined connection probability (96). One of the possibilities to
build such network is using the Erdös-Rényi algorithm (32) in which a connection probability
(pr) between 0 and 1 (0 ≤ pr ≤ 1) is considered. In the network, the number of connections is
estimated by Er = prN(N − 1). The random graph has low clustering and short path length.
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Figure 2.8: Examples of regular graphs for 10 nodes linked to their (a) 2 nearest neighbors,
(b) 4 nearest neighbors and (c) all the possible neighbors to form a global network (complete
network).

(a) (b) (c)

Source: The author.

Figure 2.9: Examples of random graphs for 10 nodes with (a) pr = 0.05, (b) pr = 0.5 and (c)
pr = 1.

(a) (b) (c)

Source: The author.

Figure 2.9 illustrates examples of random networks with N = 10 and (a) pr = 0.05, that in
this case the small number of connections makes possible to find some parts separated from the
network, (b) pr = 0.5 and (c) pr = 1 for all the possible connections.

Although the regular and random network topologies are idealization cases, it is believed
that real networks are between these extremes of order and randomness (92). In 1998, Watts and
Strogatz demonstrated that a network with shortcuts can exhibit average shortest path length as in
the random networks and high clustering coefficient as in the regular networks. These networks
were called small-world networks (33). A small-world network consists of nodes that most
of them are not neighbors of one another, but the neighbors of any given node are likely to be
neighbors of each other. Most nodes can be accessed from every other node with a small number
of hops or steps. It was found that some real networks have the same topological characteristics
of a small-world network, such as the worldwide-web (97–99), electric power grids (97) and
even neural networks, like the nematode nervous system C. Elegans (33,97) and in the anatomy
of the mammal brains (37).

One of the ways to generate a small-world network is using the Watts-Strogatz algorithm
(33). First, a regular network is built with N nodes and E0 connections. After that, Ews con-
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Figure 2.10: Examples of Watts-Strogatz graphs for 10 nodes linked to their 4 nearest neighbors
with (a) pws = 0 as a regular network, (b) pws = 0.5 as a small-world network and (c) pws = 1as a random network. The small-world regime is achieved between the extremes of order and
randomness.

(a) (b) (c)

Source: The author.

nections are randomly replaced, as the number of connections Ews is controlled by a probability
pws, where Ews = pwsE0. When pws ≈ 0, the network shows the same features of a regular one
and when pws ≈ 1, the network has the same characteristics of a random one, however, when
pws is quantified by intermediate values, the number of shortcuts can put the network in the
small-world regime, presenting a high cluster coefficient and low average shortest path length.
Figure 2.10 illustrates an example ofWatts-Strogatz graph with 10 nodes linked to their 4 nearest
neighbors for (a) pws = 0, (b) pws = 0.5 and (c) pws = 1.

However, in the Watts-Strogatz small-world networks, since non-local links are inserted by
randomly rewiring some local connections into non-local ones (33), it is possible to disconnect a
neuron from the network. To avoid this, Newmann and Watts proposed an alternative algorithm
to achieve the small-world regime. In the Newmann and Watts small-world network, randomly
selected shortcuts are added in a regular lattice instead of replacing them (34). For this network,
the number of connections depends on a probability pnw. If the number of connections of the
regular network is E0, the new number of connections is described by Enw = (1 + pnw)E0,
meaning that for each existing connection (E0), a new random connection can be added with a
probability pnw (98, 100). Figure 2.11 displays an example of Newman-Watts network with 10
nodes connected to their 4 nearest neighbors for (a) pws = 0, (b) pws = 0.5 and (c) pws = 1,
forming a network which is no longer in the small-world regime.

In general, in the Watts-Strogatz small-world networks, some local connections are replaced
by non-local connections, while all the local connections exist in the Newmann-Watts small-
world networks.

2.4 PHASE SYNCHRONIZATION

Synchronization, as a basic nonlinear phenomena, was detected when the scientist Christiaan
Huygens, in the 17th century, reported his observations where two very weakly coupled pendu-
lum clocks are synchronized in-phase (2). In the context of dynamic systems, there have been
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Figure 2.11: Examples of Newman-Watts graphs for 10 nodes connected to their 4 nearest neigh-
bors with (a) pws = 0 as a regular network, (b) pws = 0.5 as a small-world network and (c)
pws = 1 as a network that is no longer in the small-world regime.

(a) (b) (c)

Source: The author.

many variant synchronization states. Complete (or identical) synchronization, as the simplest
form of synchronization, consists of the precise convergence of all the system paths to a unique
synchronization. Frequency synchronization consists of the frequency, which locks the system
in which all elements of the system evolve with the same periodicity. Phase synchronization that
was beyond the frequencies, in which the phases are also locked (101). It is possible to describe
some concepts of the synchronization of dynamic systems by means of the Kuramoto oscillator
model.

The Kuramoto model is composed of an ensemble ofN oscillators with a nonlinear coupling
where the phase of the i-th oscillator evolving as

�̇i = �i +

N

N
∑

j=1
sin

(

�j − �i
)

, i = 1, 2, ..., N, (2.11)

where �i is the natural frequency of the oscillator and  represents the coupling strength. When
 = 0, each oscillator linearly evolves with its own frequency �i(t) =�it+�i(0), where �i(0)
indicates the initial condition of the i-th oscillator.

For the particular case of identical oscillators �i = �0, ∀i, and, without losing generality
�0 = 0 (it is always possible to select a frame rotating at the same frequency �0 when �0 ≠ 0),
then

�̇i =

N

N
∑

j=1
sin

(

�j − �i
)

, i = 1, 2, ..., N. (2.12)

Considering a vector � = (�1, �2, ..., �N ), it is shown that Eq. 2.12 exhibits a gradient equation
�̇ = −∇U (102), where the potential function is defined by

P = −

2N

N
∑

i=1

N
∑

j=1
cos

(

�j − �i
)

. (2.13)

It means that the trajectories of such systems monotonically flow at the potential surface and
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asymptotically approach the equilibrium point �̇ = 0. When  > 0, some symmetric initial
conditions around the circle [0, 2�] lead the system to a steady-state solution, called twisted
states (102), due to the fact that the sinusoidal sum between all oscillators mutually is cancelled.
When non-symmetric initial conditions are considered, the coupling leads the system to a phase-
locking stable state, where �1 = �2 = ... = �N , called complete phase synchronized state.

For non-identical oscillators, the natural frequency of the oscillators can be described based
on a probability density ℎ(�), which is considered as a function of a mean frequency Ω,

ℎ(Ω − �) = ℎ(Ω + �). (2.14)

Kuramoto defined a complex mean-field Z, which is described as

Z = R(t)ei (t) = 1
N

N
∑

j=1
ei�j (t), (2.15)

where  indicates the circular average frequency. The absolute value of Z, called Kuramoto
order parameter R, signifies the degree of phase coherence in the oscillators and can be used
as an indicator of phase synchronization. When N → ∞, the phase transition from the non-
synchronized state to the phase-synchronized one is observed in a critical value �∗, that is given
by

�∗ = 2
�ℎ(0)

, (2.16)
and the modulus of the Kuramoto order parameter is determined by

R =

⎧

⎪

⎨

⎪

⎩

0, for � ≤ �∗
√

−16
�(�∗)3ℎ′′(0)

(1 − �∗

�
), for � > �∗. (2.17)

It means that, when � is lower than a critical value �∗, desynchronization occurs, R ≈ 0, and
when � > �∗, R(�) asymptotically becomes equal to 1, and is equal to 1 at the limit of � →∞.

Although the order parameter was created to calculate the phase synchronization of Ku-
ramoto oscillators, it can be effectively applied to distinct oscillators and also neurons regardless
of periodicity presence. To do this, it is necessary to add a phase to the dynamic model. The
phase can be obtained with a projection of the dynamic system �(t) = f (X) and also with the
definition of an appropriate Poincare section where the orbit crosses once for each 2� rotation.
Therefore, the phase can be described as

�i(t) = 2�ni + 2�
t − tn,i

tn+1,i − tn,i
, tn,i ≤ t < tn+1,i, (2.18)

where tn,i represents the n-th time where the i-th system crosses the Poincare surface. Then, for
each t = tn, the second term of the equation vanishes and the phase is equal to 2�ni, for the other
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instants of time, the second term interpolates these times until the next cross occurs in t = tn+1.
The phase increases by a factor of 2� every tn+1,i− tn,i (103). After that, it is possible to quantify
the phase synchronization of the system using Eq. 2.15 for the order parameter. A dynamic
system might not present a stationary state of R(t) = R that is different from the Kuramoto
model. Tomeasure phase synchronization in distinct models, the average order parameter, which
consists of the temporal average of the order parameter module, is described as

R = 1
tF inal − tInitial

tF inal
∑

t=tInitial

R(t), (2.19)

where tInitial and tF inal are the start and end times of the order parameter computation, respec-
tively. R = 1 corresponds to a completely phase-synchronized state, in which all elements start
to cross the surface at the same time. On the other hand, R = 0 means that each element in the
network has a corresponding pair that is completely out-of-phase. This is related to a completely
incoherent state (completely unsynchronized) or a state with clusters of in-phase neurons that
are anti-phase between themselves (104).

Throughout this thesis, it is focused on the burst phase synchronizationa as a type of neural
synchronization, that is obtained by the maximum value of the slow variable yt as the beginning
point of bursting. It is possible to observe bursts and oscillatory patterns when the slow and
fast oscillations illustrated in Fig. 2.5 are considered. The neuron’s phase changes in the inter-
val [0, 2�] during the evolution of t. To analyze the burst synchronization of a network, each
neuron’s phase at time t (�it) is written as

�it = 2�n + 2�
t − tin
tin+1 − tin

, (2.20)

where n as the first burst, is labelled by the index n = 0, describes an integer, tin determines the
beginning time of the n-th burst of the i-th neuron, and t is chosen from tin to tin+1. Therefore,
tn+1 − tn is measured as the duration of the burst that fluctuates according to xit in an irregular
behavior.

The phase synchronization related to bursts of neural ensemble is used to calculate the Ku-
ramoto order parameter (105) that is essential to understand the bursting synchronous behavior
of the network. The order parameter is defined by

Rt =
|

|

|

|

|

|

1
N

N
∑

i=1
exp

(

r�it
)

|

|

|

|

|

|

, (2.21)

whereN is the number of neurons and r as the imaginary unit is equal to√−1. �it is the neuron’s
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phase i at time t. The time-averaged order parameter is given by

R = 1
T

tFinal
∑

t=tInitial

Rt, (2.22)

where the time interval T represents the total simulation time, after a transient time and changes
in the interval [tInitial, tFinal]. If the neurons are phase-synchronized or desynchronized, the time-
averaged order parameter R is equal to 1 or 0, respectively.

If there are subnetworks in the network, as observed in the research area 2, the Kuramoto
order parameter is calculated by

Rt =
|

|

|

|

|

|

1
N × P

N
∑

i=1

P
∑

p=1
er�

(i,p)
t

|

|

|

|

|

|

, (2.23)

where N is the total number of neurons of each subnetwork, P is the number of cortical areas,
and �(i,p)t is the phase of the neuron i in the cortical area p at time t. Eqs. 2.20 and 2.22 remain
the same for this network including subnetworks.

2.5 EXTERNAL PULSED PERTURBATIONS

External perturbations have an important implication in the context of neural dynamics, due
to the fact that perturbations can be associated with stimulus on the sensory perceptions, promot-
ing changes in the individual or collective behavior of the neurons (106). These perturbations
are associated with the external currents that can be distributed in a probabilistic way by a func-
tion (107), or can be pulsed (73). The pulses can be periodic or random. The neurons in a neural
network can be stimulated by an external current which has a constant or pulsed profile.

An external pulsed current, periodic or random, at time t (Λt) for each neuron i is given by

Λit = I0 +  (t), (2.24)

where I0 represents a current with constant amplitude in �A/cm2 and  (t) describes the pulses
with amplitude �, that can be added to I0 during a time. When the external current is pulsed,
 (t) is assumed a value equal to 0 or � in an on-off configuration along time. Figure 2.12
displays a schematic representation of external currents. The first case (Fig. 2.12(a)) is a periodic
pulsed current, in which the on-off transition in  (t) during the simulation occurs in the fixed
time intervals Δtp1 and Δtp2 , respectively, while the second one (Fig. 2.12(b)) is a pulse in
which the transition on-off in  (t) has time interval, Δtr , randomly distributed (random uniform
distribution).

Furthermore, external pulsed currents have been used to theoretically describe deep brain
stimulation (DBS) (as shown in Fig. 2.13), as a neurosurgical procedure (69). The DBS con-
sists of electrodes implanted within certain areas of the brain, generating electrical impulses to
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Figure 2.12: (a) Periodic pulsed current for I0 = 10 �A/cm2, � = 1.5 �A/cm2, Δtp1 = 2ms, and
Δtp2 = 2ms, and (b) random pulsed perturbation for I0 = 10 �A/cm2, � = 1.5 �A/cm2, and Δtrrandomly distributed in the interval [0, 20] ms.
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Figure 2.13: The Deep Brain Stimulation system consists of three components: the lead, the
extension wire, and the neurostimulator.
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regulate abnormal neural activities, for instance, in patients with epilepsy, and Alzheimer’s dis-
ease and to provide remarkable therapeutic benefits for otherwise treatment-resistant movement
disorders such as Parkinson’s disease, tremor and dystonia (108,109). For example, movement-
related symptoms of Parkinson’s disease and other neurological conditions are caused by disor-
ganized electrical signals in the areas of the brain that control movement. Therefore, the DBS
interrupts the irregular signals that cause tremors and other movement symptoms. The Food and
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Drug Administration (FDA) approved DBS as a treatment for essential tremor in 1997, Parkin-
son’s disease in 2002, and dystonia in 2003 (109).

The DBS system consists of three components: the lead, the extension wire and the im-
planted pulse generator (neurostimulator). The lead, also called an electrode, is a thin, insulated
wire that is inserted through a small opening in the skull and implanted in the brain. The tip
of the electrode is positioned within the targeted brain area. The extension wire is an insulated
wire that is passed under the skin of the head, neck, and shoulder, connecting the lead to the
neurostimulator. The neurostimulator (the battery pack) is the third component and is usually
implanted under the skin near the collarbone. The whole system lies under the skin and controls
the amount of stimulation. The pacemaker device delivers a constant fast-frequency stimulus to
the tip of the electrode implanted in the brain. This stimulus interrupts a specific circuit in the
brain that is overactive in the disease state. This interruption of the diseased overactive circuit
can significantly improve the symptoms of the disease.
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3 RESEARCH AREA 1

Throughout the life of every individual, the brain can be altered and adapted due to neu-
roplasticity (54). Neuroplasticity, also known as brain plasticity or neural plasticity, allows the
brain to improve its connections or rewire itself. Functional and structural plasticities are respon-
sible for the ability to move functions from an injured area of the brain to other undamaged ones
and to alter its physical organization as a result of learning, respectively (111). In other words,
the synaptic modifications can help the brain to enhance fitness, to promote existing cognitive
capabilities, and to recover from some brain injuries. Furthermore, brain plasticity has im-
pacts on neural synchronization. This chapter is devoted to build a neural network composed of
coupled Rulkov neurons with chemical excitatory connections randomly distributed, which are
quantified with initial weight values and updated by the time difference between the burst-start
points related to presynaptic and postynaptic neurons, namely burst-timing-dependent plasticity
(BTDP). After that, it is investigated the effects of external perturbations, such as periodic and
random pulses, on the neural synchronous behavior of the network influenced by the BTDP rule.
It is shown that the plasticity changes the synaptic weights between the presynaptic and postsy-
naptic neurons, and as a consequence the burst synchronization, as well as the external periodic
and random pulsed perturbations can induce synchronization and desynchronization states in
the plastic network.

3.1 RANDOM NETWORK OF RULKOV’S NEURONS

A random neural network, containing 1000 Rulkov’s neurons connected by means of a pre-
determined probability distribution p = 0.35 according to the Erdös-Rényi model, is built. The
dynamic behavior of the neural network containing chemical excitatory synapses and external
pulsed perturbation is defined by

xit+1 = �i

1 + (xit)2
+ yit −

1
(1∕N)

∑J
ij Cij

(xit − Rs)
J
∑

j=1
CijWij,tH(x

j
t − ')

+Λit, (3.1)
yit+1 = yit − �(x

i
t − �), (3.2)

where xit and yit related to the neuron i at time t are randomly selected from the interval [−2, 2]
and [−4, 0], respectively. �i is randomly distributed in the interval [4.1, 4.4], � = 0.0009 and
� = 0.0011. N is the number of neurons connected to each other. Cij describes the connection
between the presynaptic i and postsynaptic j neurons. When the element of an adjacency matrix
is equal to 1, the connection exists and 0 otherwise. Rs = 1 is the reversal potential and H(x)
is the Heaviside step function with the spiking threshold of the membrane potential ' equal to
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0. Furthermore, Λit is an external pulsed perturbation applied in the neural network to active
spikes in neurons as explained in Eq. 2.24. Wij,t represents the synaptic weight of the synapse
j → i at time t and controls how strong or weak the connections are. This parameter assumes
values between 0 and Wmax and can change over time following the plasticity rule. For the
random network,Wmax is equal to 0.1. To quantify the synaptic weights with initial weight values
and modify them as the network evolves, the burst-timing-dependent plasticity (BTDP) rule
introduced by Butts et al. (65), which measures the time difference between the burst-start times
(or burst latency) of two connected neurons to determine the synaptic weight change according
to the equation given by

ΔW (Δt) =

⎧

⎪

⎨

⎪

⎩

Am −
Am−An
Ts

|Δt|, if |Δt| ≤ Ts

An, if |Δt| > Ts,
(3.3)

where Am = 0.008, An = −0.0032, and Ts = 58. The change in the synaptic weight is cal-
culated with Δt equal to the difference between the last burst-start time of the presynaptic and
postsynaptic neurons.

All synapses are updated twice for burst pair (Wij is updated both when i starts a burst and
when j does). To correct this,An → N = An∕2 andAm →M = Am+N in Eq. 3.3 are changed.
In addition, the values of the synaptic weights in the range 0 ≤ Wij ≤ Wmax are limited. If the
application of the plasticity rule results in a negative synaptic weight, or one greater thanWmax,
the synaptic weight value is set to the trespassed limit. If both neurons burst at similar times,
then the potentiation occurs, by the other hand, if the difference time between the burst-start
events is large enough, the potentiation suffers a depression. A plot of the BTDP function is
shown in Fig. 3.1.

The initial value for all synapses is the same synaptic weightW0. After a transient of ttrans =
5 × 104 steps in which the neurons are active but the plasticity is not computed, the network is
let to evolve for 1 × 106 steps. During this time interval, the synaptic weights vary according to
the plasticity rule, and the network synchronization level is measured.

3.2 RESULTS

3.2.1 Bursting Synchronization Induced by Burst-Timing-Dependent Plasticity (BTDP)
The effects of the BTDP rule on the random neural network in terms of the order parameter

in Eq. (2.21), the time-averaged order parameter in Eq. (2.22) and the mean synaptic weight in
Eq. (3.4) are studied. The mean synaptic weight is defined by

⟨W ⟩ = 1
∑J

i,j=1 Cij

J
∑

i,j=1
CijWij , (3.4)
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Figure 3.1: Change on synaptic weight as a function of the time latency between the burst-
start events of two connected neurons. Bursts starting close together cause synapse potentiation,
while large burst latency causes depression.
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where∑J
i,j=1 Cij is the total number of synapses in the network.

The relation between the potentiation and burst synchronization for different initial weights
is analyzed. Figure 3.2(a) displays the time series of the mean synaptic weight and the order
parameter for the initial weightW0 = 0, while the time series forW0 = 0.1 is exhibited in Fig.
3.2(b). It is verified that the potentiation starts before occurring bursting synchronization. With
regard to Fig. 3.2(a) forW0 = 0 and t less than 3×105 ms, the bursts of high-frequency neurons
occur and the average synaptic weight slowly increases. In this case, the connections between
the neurons are not strong enough and as a consequence the order parameter does not enhance.
For t > 3 × 105 ms, the synapses become strong and the order parameter quickly increases to
reach approximately 0.6 at the final time point, where the synapses are in the maximum weight
value. For W0 = 0.1 (Fig. 3.2(b)), the mean synaptic weight is 0.1 and the synchronization
saturates.

Figure 3.3 shows the average synaptic weight ⟨W ⟩ as a function of the initial synaptic weight
valueW0 ∈ [0, 0.1] for the random neural network. The curves related toW0 ≤ 0.045 andW0 ≥
0.055 are smooth and are connected to each other by a region in the interval 0.045 < W0 < 0.055.
The occurrence of potentiation in these two parts separated from each other depends on the
presence of initial synchronization in the network. The coincidence of bursts of high-frequency
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Figure 3.2: Time evolution of the mean synaptic weight (red line) and order parameter (black
line) for (a)W0 = 0 and (b)W0 = 0.1. It is observed that the potentiation begins before occurringbursting synchronization.
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Figure 3.3: Mean synaptic weight as a function of the initial synaptic weight. The curve is
separated into three parts: W0 ≤ 0.045, 0.045 < W0 < 0.055, andW0 ≥ 0.055. The potentiationis preferred more than depression.

Source: The author.

neurons induces the potentiation for smallW0 compared to the potentiation due to the beginning
of the synchronization for largeW0. The mean synaptic weights change according to their initial
synaptic weights. Therefore, the potentiation is preferred more than depression.

The time-averaged order parameter as a function of the initial synaptic weight value for
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Figure 3.4: Time-averaged Kuramoto order parameter as a function of the initial synaptic weight
value for before (initial state in black line) and after (final state in red line) applying the BTDP
rule.

Source: The author.

before (black line) and after (red line) applying the BTDP rule to the neurons coupled is exhibited
in Fig. 3.4. The curve is divided into the three groups separated by the initial weights: W0 ≤
0.045, 0.045 < W0 < 0.055, and W0 ≥ 0.055. For W0 ≤ 0.045, the mean order parameter of
the initial state has valuesR ≤ 0.11, indicating that the synchronization in the initial state is low
or inexistent. It means that the mean order parameter related to this state is small as it smoothly
enhances. In this cases, the initial synapses are not strong enough to synchronize the neurons in
the network. When the plasticity is considered (red line), R smoothly increases, even without
initial synchronization. In particular, for W0 = 0, when there is no interaction between the
neurons before applying the plasticity rule, synapse potentiation is identified. At this point, the
potentiation comes not from synchronization, but from a different phenomenon entirely, that is
related to the natural neural frequencies. For this interval (W0 ≤ 0.045), the potentiation is due
to the coincidence of bursts of high-frequency neurons, which is called “Type I potentiation”.

ForW0 ≥ 0.055, the mean order parameter of the initial state has values R ≥ 0.6, indicating
the existence of burst synchronization. This occurs due to the fact that the initial state synapses
are strong enough to synchronize the network right from the start. After applying the plasticity
rule, an increase of R for these W0 is observed. When the initial synchronization occurs, the
mean synaptic weight will increase. It causes the neurons to burst at almost the same time and
thus potentiate the synapses. This mechanism of potentiation via synchronization-caused burst
coincidence is a “Type II potentiation”. As the synapses get stronger, the network becomes more
synchronized, and as a consequence an increase on the order parameter is also observed. There
is a positive feedback between synchronization and potentiation, and this feedback is the reason
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that synaptic weights go to their maximum values. The synapses that connect synchronized
neurons become stronger over time.

When the intermediate values of W0 are considered as 0.045 < W0 < 0.055, both Type I
and II mechanisms appear. The mean order parameter of the initial state changes from 0.11 to
0.6, while it is in the interval [0.67, 0.77] for the final state. For the range related to the final
state, a partial burst synchronization occurs between the neurons. There are some neurons that
are synchronized to each other and their synapses are potentiated. There are also some high-
frequency neurons that do not start synchronized to the others. The synapses between these
neurons are also strengthened due to the coincidence of bursts. Then, there are two groups
of synapses that are potentiated, where one is connected with synchronized neurons and the
other that is connected with high-frequency neurons. However, the synapses connecting a high-
frequency neuron to a synchronized neuron are not potentiated, but instead they are depressed.
For this reason, in this regime, two separate clusters are identified, one that is composed of
neurons that potentiate via Type I mechanism and the other via Type II mechanism.

3.2.2 Effects of External Pulsed Perturbations in Bursting Synchronous Behavior
The effects of external perturbations in the random network formed according to the Erdös-

Rényi model and influenced by the BTDP rule are investigated. Firstly, an external periodic
pulsed current in the neural network with I0 = 8 �A/cm2 and Δtp1 and Δtp2 varying in the
interval [0, 20] ms, as exhibited in Fig. 3.5, is applied. Figures 3.5(a) and 3.5(b) exhibit R in
color scale for the two different amplitudes, � = 0.3 and � = 0.5 �A/cm2, respectively. In Fig.
3.5(a), the neurons are synchronized with each other for small values of Δtp1 and Δtp2 , while the
desynchronization among them occurs when Δtp1 ≥ 3.0 ms and Δtp2 ≥ 4.5 ms. On the other
hand, it is observed that desynchronization begins from Δtp1 ≥ 1.5 ms and Δtp2 ≥ 2.5 ms in
Fig. 3.5(b). As a consequence, various values considered for the time duration can decrease the
mean order parameter and suppress synchronous behavior in the random network influenced by
the BTDP rule.

Moreover, the dynamical behavior of the neurons under an external random pulsed current
is analyzed. Figure 3.6 shows the time-averaged order parameter in color scale forΔtr randomly
distributed in the interval [0, 20]ms with I0 and � varying in the range [8, 15] and [0, 2], respec-
tively. Therefore, there are no significant alterations in the synchronous behavior by varying I0
in the range [8, 15]. However, the values of � approximately larger than 0.27 are able to suppress
neural synchronization.

In summary, our numerical simulations show that both mean synaptic weight and time-
averaged order parameter as a function of the initial weights enhance when the high-frequency
bursts occur or the synapses become strong enough between synchronized neurons. Further-
more, the external pulsed currents play an important role in changing burst synchronization.
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Figure 3.5: Δtp2 × Δtp1 for (a) � = 0.3 �A/cm2 and (b) � = 0.5 �A/cm2 with I0 = 8 �A/cm2 to
represent R in color scale for the plastic network under a periodic external current. Depending
on the time duration, synchronous behavior can be suppressed in the random network.

Source: The author.

Figure 3.6: Mean order parameter (color scale) in the parameter space � ×I0 of coupled neuronsunder a random pulsed perturbation with Δtr randomly distributed in the interval [0, 20] ms. It
is not observed a significant alteration in the synchronization by varying I0.

Source: The author.
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4 RESEARCH AREA 2

The human brain is a complex organ responsible for cognitive processes and physiologi-
cal functions. It contains about 100 billion neurons that are coupled by means of electrical
and chemical synapses. The electrical synapse is a bidirectional link between two neighboring
neurons. In the chemical synapse, never impulses are transferred in one way by means of neu-
rotransmitters. The neurons connected to each other form a large layered network in which the
different cortical and non-cortical layers in one hemisphere have connections with other ones
in another hemisphere. In this chapter, the main purpose is the study of burst synchronization
and desynchronization in a neural network model composed of 83 subnetworks available in both
hemispheres and brain stem of a human brain. Likewise, a neural network based on the struc-
tural connectivity matrix of a human brain is built. The network is composed of cortical regions
in which each region is described by subnetworks with small-world properties. Depending on
the parameters, it is possible to observe synchronous and desynchronous behaviors. Also, the
effects of periodic and random pulsed currents in the neural activities are analyzed. It is shown
that pulsed currents play an important role in the emergence and suppression of neural synchro-
nization.

4.1 NETWORK OF SMALL-WORLD NETWORKS MODEL

The network selected for the study consists of 83 nodes corresponding to different cortical
and non-cortical regions, and brain stem as illustrated in Fig. 4.1, where each node has 120 neu-
rons described by the Rulkov model. A structural connectivity matrix according to the brain of a
healthy individual from https://braingraph.org (113–115) is used to build a neural networkmodel
containing the organization of connections between the different brain regions. The connection
matrix, presenting a weighted matrix, whose values represent the number of fibers. Figure 4.2
illustrates how nodes in the brain connect to other nodes, where the color code represents the
number of fibers. The symmetry adjacency matrix demonstrates the connections between the
83 regions located at the cortex surface and limbic system for both right and left hemispheres,
and also brain stem. The regions from 1 to 41 are related to the right hemisphere, from 42 to
82 are located at the left hemisphere, and the region with the number 83 is considered for the
brain stem. By considering the matrix, a new matrix with only five numbers in different colors
is built, as shown in Fig. 4.3. The number 0 (white) shows that there is no connection be-
tween the two cortical regions. The numbers 1 (red), 2 (green), 3 (blue) and 4 (black) represent
the weak, intermediate, normal and strong connections between the cortical areas, respectively.
These numbers are based on the work published by Scannell and Young (49). They reported the
connectional organization of neural systems in the cat cerebral cortex. The regions with white,
red, green, blue, and black colors have no connections, 50, 100, 150, and 200 connections with
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Figure 4.1: Illustration of cerebral cortex located at the cortical regions, limbic system located
at the non-cortical regions, and brain stem in the brain.

Source: Adapted from (112).

Figure 4.2: Connectome in the direction of the cuts: y (coronal), x (sagittal), and z (axial),
respectively, for a healthy subject. The color bar indicates the amount of weights described as
the number of fibers. Only 15% of the connections are considered, due to the fact that the graphs
are very dense. L and R indicate the left and right hemispheres, respectively. P and A depict
the posterior and anterior of the brain, respectively.
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other regions, respectively. The connections are randomly selected. The numbers 1, 2, 3, and
4 have been classified according to the number of fibers in the interval [1, 3000], [3001, 6000],
[6001, 9000] and more than 9000, respectively, from the structural connectivity matrix of the
brain.

Each cortical region is represented by a subnetwork with small-world properties. The small-
world network has a combination of short path length comparable to a random network and
high clustering as a regular network (33). According to these features, small-world networks
have been applied in various researches related to the connectivity of the nervous system (37,
47). In this work, the small-world network introduced by Newman and Watts is used to build
subnetworks containing 120 neurons connected to their 4 nearest neighbors with the probability
distribution p = 0.2. In the Newman-Watts model, there is no probability of a part of the network
becomes disconnected from the rest. In the small-world subnetworks, the electrical coupling is
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Figure 4.3: Structural connection matrix related to the 83 areas in the brain of a healthy human.
The areas start from 1 to 41 for the right hemisphere, from 42 to 82 for the left hemisphere, and
with the number 83 for the brainstem.
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just between the nearest neighbors (local), while the chemical connections only provide the
shortcuts (non-local) considered by the probability distribution. The links between the small-
world subnetworks follow the cortical connectome of the brain, as shown in Fig. 4.3.

With regard to the connections among the neurons, the couplings can be electrical or chemi-
cal. The chemical coupling can be excitatory or inhibitory. Within each small-world subnetwork,
there are local and non-local connectivities that describe the electrical and chemical synapses,
respectively. The connections between each subnetwork are non-local links based on the chem-
ical synapses.

The mathematical model is given by

x(i,p)t+1 = �(i,p)

1 + (x(i,p)t )2
+ y(i,p)t + e

2
(x(i−1,p)t + x(i+1,p)t − 2x(i,p)t )

−c
N
∑

j=1

P
∑

f=1
[A(j,f ),(i,p)H(x

(j,f )
t − ')(x(i,p)t − Rs)] + Λ

(i,p)
t , (4.1)

y(i,p)t+1 = y(i,p)t − �(x(i,p)t − �), (4.2)
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where the initial conditions for the variables xt and yt are randomly selected from [−2, 2] and
[−4, 0], respectively. The pair (i, p) shows the neuron i (i = 1, 2, ..., N) in the brain area p
(p = 1, 2, ..., P ), where N = 120 is the number of neurons in each subnetwork and P = 83 is
the number of brain areas. The connectivity matrix is given by A(j,f ),(i,p), corresponding to the
chemical coupling. When the neuron (j, f ) connects with the neuron (i, p), the element of the
matrix is equal to 1, otherwise is equal to zero. The �(i,p) value is the non-linearity parameter
of the Rulkov model randomly selected from [4.1, 4.4]. The values of �(i,p) are distributed us-
ing a random uniform generator. It is considered � = 0.001 and � = −1.25. Furthermore, e
and c are associated with the electrical and chemical coupling strengths, respectively. H(x) is
the Heaviside step function with the presynaptic threshold equal to ' = −1.0 for the chemical
synapse. When the presynaptic neuron voltage is greater than ', the post-synaptic neuron re-
ceives an input. The constant Rs is described by the nature of the post-synaptic ion channels
and determines the reversal potential related to the synapse. In 1984, Feldman (116) reported
that approximately 70 − 80% of the neural population of the cortex is excitatory. If Rs = 1
or −2, the synapse is excitatory or inhibitory, respectively. These values of Rs are randomly
distributed in whole network that in such way 75% and 25% of connections, respectively, are
excitatory and inhibitory (117). A single neuron does not make both excitatory and inhibitory
connections with other neurons. Finally, Λ(i,p)t is an external pulsed perturbation that activates
the spikes in the neurons. The Rulkov neurons are stimulated over time t by periodic and random
pulses considered as an external pulsed current as described by Eq. 2.24.

4.2 RESULTS

4.2.1 Burst Synchronization without Pulses
In the central nervous system, bursts and oscillatory patterns of neural activities can be ob-

served from slow to fast oscillations (118). In this work, it is focused on the burst phase syn-
chronization, which is a type of neural synchronization (119). It is possible to identify phase
synchronization related to bursts of neural ensemble by means of the Kuramoto order parame-
ter (105), as described by Eqs. 2.22 and 2.23.

With regard to the neural network for an individual, the values of the time-averaged order
parameter (color scale) as a function of the electrical and chemical coupling strengths are dis-
played in Fig. 4.4. This figure shows the coupling strength ranges in which the network exhibits
synchronous behavior. The neural network does not exhibit a completely phase synchronized
state (R = 1), due to the fact that the neurons are not identical. According to the network syn-
chronization diagnostic of the dynamics, the regions forR < 0.8 show desynchronous behavior,
while synchronous behavior occurs for R ≥ 0.8. The increase of the chemical coupling c leads
the network to the neural synchroniation.
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Figure 4.4: Time-averaged order parameter (color bar) as a function of c (chemical synapses) in
the interval [0, 0.05] and e (electrical synapses) in the range [0, 0.1] of the human’s brain areas
during 106 iterations.
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4.2.2 Applying External Pulsed Perturbations in Bursting Synchronization
It has been reported that external pulsed currents can cause changes in neural synchronous

behavior, as well as alterations in neuron spiking activities (73, 120). With this in mind, the
effect of external pulsed perturbations, as described in Eq. (2.24), in the brain network model
considering e = 0.1 and c = 0.05, as shown in Fig. 4.5, is investigated. Figure 4.5 displays the
effect of periodic pulses with I0 = 8, � = 0.1, and Δtp1 and Δtp2 ∈ [1, 100] ms, which represent
the on and off intervals in the periodic pulse profile, respectively. The periodic perturbation
induces a change in the synchronous behavior and reduces the value of the time-averaged order
parameter in some areas. The results show that alterations related to Δtp1 and Δtp2 play an
important role in the synchronous patterns. In other words, depending on the combination of
Δtp1 and Δtp2 , synchronization and desynchronization can emerge in all the network.

Considering the impact of the periodic pulses in the whole brain, it is investigated how this
external perturbation influences the synchronous behavior in the regions from 1 to 34, from 35
to 41, from 42 to 75, from 76 to 82, and 83, as exhibited in Fig. 4.6 from the panels (a) to (d), and
Fig. 4.7, respectively. For the cortical areas in the right hemisphere, Fig. 4.6(a) displays that,
for instance, the burst desynchronization with R about 0.4 and 0.6 starts from the time intervals
greater than Δk1 ≈ 20 ms and Δk2 ≈ 10 ms, and continues until the center of the figure and
around it. The synchronous behavior for the non-cortical areas in the right hemisphere is not
suppressed when the on-off intervals change, except on some combinations of them with the
time-averaged order parameter about 0.6 dispersed in Fig. 4.6(b). Regarding the cortical and
non-cortical areas in the left hemisphere, the bursting synchronization and desynchronization
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Figure 4.5: Averaged order parameter of the human’s brain network under a periodic pulse with
I0 = 8 �A/cm2 and � = 0.1 �A/cm2 in the parameter space Δtp2 × Δtp1 varying in the interval
[1, 100] ms for the synchronized point e = 0.1 and c = 0.05.
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(Figs. 4.6(c) and 4.6(d)) are very similar to the behaviors observed in Figs. 4.6(a) and 4.6(b),
except some points indicating more synchronous behavior with the light purple color scale dis-
persed in the middle of the figure. In Fig. 4.7, it is observed neural synchronous behavior with
R close to 0.8.

The effect of random perturbations, as another type of external pulsed current, is investigated.
Random pulses with I0 = 8, � ∈ [0, 4] and Δtr randomly distributed in the interval [20, 100] are
considered. To investigate the neural synchronous behavior in the whole brain network under
a random current, the time-averaged order parameter R, as displayed in Fig. 4.8, is calculated.
Increasing � approximately from 0.1 to 2, the bursting synchronization is suppressed for almost
all the values related to Δtr . The burst synchronous behavior does not change for about � > 2
and alterations in the on-off time intervals have no substantial effect on the synchronization. For
� < 2, the parameter regions in which synchronization appears are observed.

In order to study the bursting synchronous behavior, an external current with random pulses
in the 5 regions is applied. In Fig. 4.9, desynchronization (R equal or close to 0.4 or 0.6) in
the four regions exhibited in the panels (a), (b), (c), and (d) is appeared. The desynchronization
occurs for all the amplitudes, except for � = 0.1. Figure 4.9(d) shows the time-averaged order
parameter greater than the panels (a), (b), and (c). Furthermore, the random perturbation applied
in the region 83 (brain stem) of the brain changes the synchronization in the whole region with
R approximately equal to 0.7, as shown in Fig. 4.10. The bursting synchronization does not
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Figure 4.6: Time-averaged order parameter of the whole brain network grouped into regions
from (a) 1 to 34, (b) 35 to 41, (c) 42 to 75, and (d) 76 to 82. A periodic pulsed current with
I0 = 8 �A/cm2 and � = 0.1 �A/cm2 in the parameter space Δtp2 × Δtp1 varying in the interval
[1, 100]ms for e = 0.1 and c = 0.05, which indicates the bursting synchronization, is considered.
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Figure 4.7: Time-averaged order parameter of the region 83 by considering a periodic pulsed
perturbation with I0 = 8 �A/cm2, and � = 0.1 � A/cm2 in the parameter space Δtp2 × Δtp1varying in the interval [1, 100] ms for e = 0.1 and c = 0.05 indicating the burst synchronous
behavior.
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Figure 4.8: Averaged order parameter of the whole brain network under a random pulsed current
as a function of � and Δtr changing in the interval [0, 4] �A/cm2 and [20, 100] ms, respectively,
for I0 = 8 �A/cm2, e = 0.1, and c = 0.05.
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Figure 4.9: Time-averaged order parameter of the four cortical regions of the brain network
from (a) 1 to 34, (b) 35 to 41, (c) 42 to 75, and (d) 76 to 82, by considering a random pulsed
perturbation with � and Δtr in the interval [0, 4] �A/cm2 and [20, 100] ms, respectively, for
I0 = 8 �A/cm2, e = 0.1, and c = 0.05.
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depend on � and Δtr .
In summary, the numerical simulations show that the external pulsed perturbations generated

by electrodes in the brain, also known as deep brain stimulation, not only can have a relevant
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Figure 4.10: Time-averaged order parameter of the region 83 of the brain network under a ran-
dom pulsed current for � and Δtr selected from the interval [0, 4] �A/cm2 and [20, 100] ms,
respectively. It is considered I0 = 8 �A/cm2, e = 0.1, and c = 0.05.
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effect on the dynamics of neurons in the network based on a human’s brain areas, but also can
create changes in the emergence of spike activities and bursting synchronization.
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5 FINAL REMARKS

Throughout this thesis, the main goals are to demonstrate the emergence of bursting syn-
chronization and desynchronization in two different neural networks, and also to show the ef-
fect of external periodic and random pulsed currents on neural activities related to pathological
synchronous behavior. In this sense, two different network topologies, one influenced by burst-
timing-dependent plasticity and another one built according to the structural connectivity matrix
of a healthy human brain, have been considered.

In Chapter 3 as Research Area 1, a random neural network based on the Erdös-Rényi model
was built. The neurons were connected by means of a pre-determined probability distribution.
The chemical excitatory synapses among the neurons were quantified with initial weight val-
ues and updated by the time difference between the burst-start points related to presynaptic and
postynaptic neurons, namely burst-timing-dependent plasticity (BTDP). The relation between
the potentiation and burst synchronization for different initial weights in the network with BTDP
was investigated. Two types of potentiations in the simulations were indentified. In the Type I
potentiation, there was no synchronous behavior, while the Type II potentiation was induced by
the synchronization. Previous studies have reported the emergence of bursting synchronization
in networks with BTDP (66, 68). Furthermore, periodic and random pulses as external pertur-
bations were considered to study how they influence the bursting synchronous behavior. In the
numerical simulations, it was shown that both mean synaptic weight and time-averaged order
parameter as a function of the initial weights enhance when the high-frequency bursts occur or
the synapses become strong enough between synchronized neurons. Furthermore, the external
pulsed currents played an important role in changing burst synchronization. It was demonstrated
that that pulsed currents can be an effective method to suppress neural synchronization in a plas-
tic network. There are experimental evidences that pulsed currents generated by electrodes in the
brain, known as deep brain stimulation, can be used to treat some neurological conditions (108).

In Chapter 4 as Research Area 2, a neural network model based on the healthy human brain
cortical and non-cortical areas, and brain stem was designed. The network was composed of
83 small-world subnetworks of coupled Rulkov neurons for each brain area. In the network,
each neuron can have local and non-local connections with other neurons by means of electrical
and chemical synapses, respectively. Without external pulsed currents, the neurons can exhibit
synchronization between themselves due to the synaptic interaction. With regard to the exter-
nal perturbation with periodic pulses, the neural activities depend on the pulse duration. For
the random pulsed currents, a reduced time-averaged order parameter was observed when the
pulse amplitude changes. The results were robust due to the fact that it was considered not only
different nonlinearity parameter values in the range in which the neurons exhibit chaotic bursts,
but also the initial conditions were randomly distributed. The results had some similarities with
the outcomes obtained by Lameu et al. (30) for a clustered scale-free neural networks based
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on the cat cortex structure. The neurons in the whole networks exhibited synchronous patterns
when the coupling strenght is increased. Depending on the external perturbation, it is observed
regions with synchronous behavior while others remained desynchronized. An external pulsed
current which permits a better control on the synchronization was considered, due to the fact
that the pulse amplitude and time interval can be chosen freely.

Overall, It was demonstrated that the burst-timing-dependent plasticity as a type of neuro-
plasticity and the synaptic interaction between presynaptic and postsynaptic neurons, and also
between subnetworks can exhibit the formation and destruction of bursting neural synchroniza-
tion in the networkmodels, as well as that the external pulsed currents can be an effective method
to suppress bursting neural synchronization in the neural networks with variant topologies.

The results of this thesis offer various directions for further research. It will be worthwhile
to investigate the effect of external pulsed currents on a network built according to the structural
connectivity matrix of two human brains diagnosed with Alzheimer’s disease and brain tumor.
After that, it can be a good work to compare the brain regions indicating synchronization and
desynchronization with those identified by a healthy subject. Furthermore, the emergence of
bursting synchronization and desynchronization in a network influenced by neurogenesis and the
effect of external pulsed currents on the network can be valuable when the results are compared
with those results obtained from the plastic network.
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