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ABSTRACT

Hamiltonian systems represent a vast class of dynamical systems that have the special fea-
ture of preserving volume in phase space. The phase space of a typical Hamiltonian system is
neither integrable nor uniformly hyperbolic. It exhibits both regular and chaotic components.
For two-dimensional quasi-integrable systems with a hierarchical phase space, chaotic orbits
can spend an arbitrarily long time around islands of stability, in which they behave similarly
to quasiperiodic orbits. This phenomenon is called stickiness and is one of the main conse-
quences of the complex hierarchical structure of islands-around-islands embeded in the chaotic
sea. Stickiness affects the global transport properties of the system and the convergence of the
Lyapunov exponents. In this thesis, we analyze nonstandard dynamical measures for the quan-
tification of chaotic motion and the detection of the stickiness effect in Hamiltonian systems.
Initially, we consider the standard map, which is a simple, paradigmatic system that displays all
the features of quasi-integrable Hamiltonian systems. First, we introduce a recently proposed
dynamical measure based on ergodic theory and a weighted Birkhoff average. By using this
measure, we successfully distinguish chaos and regularity for different values of the standard
map’s non-linearity parameter k, and we apply it together with the uncertainty fraction method
to determine the fractal dimension of the islands’ boundary for a special value of k, namely,
k = 6.908745. For this value, the standard map’s phase space is composed of a self-similar
hierarchical structure of islands within the chaotic sea, and we show that the deeper we go into
this structure, the longer it takes for the orbits to escape the trapping region, and the higher the
boundary dimension becomes. Additionally, the dimension depends on the position in phase
space as well as on the scale of the initial condition uncertainty, which implies the existence of
an effective fractal dimension. As a further measure, we propose the use of an entropy-based
measure of the recurrence plots (RPs). We estimate the recurrence times of an orbit from the
RP and calculate the Shannon entropy of its distribution, known as the recurrence time entropy
(RTE). We find that the RTE is an alternative way of detecting chaotic orbits and sticky regions.
We show that the largest Lyapunov exponent and the RTE exhibit a high correlation coefficient
even when considering relatively small time series (5000 data points). By computing the RTE
in smaller time windows along the evolution of a single chaotic orbit, we find the finite-time
RTE distribution to be multi-modal when sticky regions are present in phase space, and we
successfully identify the specific areas in phase space that correspond to each mode. We also
quantify the duration of each stickiness regime and find that the cumulative distribution of trap-
ping times in the sticky regions follows a power law tail, while the distribution when the orbit
wanders in the chaotic sea displays an exponential decay. Seeking a more robust analysis of the
aforementioned dynamical measures, we consider another two-dimensional Hamiltonian system
with a hierarchical divided phase space: the billiard system. We demonstrate that these mea-
sures characterize all dynamical behavior of such a system, with the advantage of not relying on
the Jacobian matrix for their calculation, unlike the Lyapunov exponents.

Keywords: quasi-integrable Hamiltonian systems, stickiness effect, weighted Birkhoff average,
recurrence plots, recurrence time entropy.



RESUMO

Sistemas Hamiltonianos representam uma vasta classe de sistemas dinâmicos que possuem
a característica especial de preservar o volume no espaço de fase. O espaço de fase de um típico
sistema Hamiltoniano não é integrável nem uniformemente hiperbólico. Ele exibe componentes
tanto regulares quanto caóticas. Para sistemas bidimensionais quasi-integráveis com um espaço
de fase hierárquico, órbitas caóticas podem passar um tempo arbitrariamente longo ao redor de
ilhas de estabilidade, nas quais se comportam de maneira similar a órbitas quase-periódicas.
Esse fenômeno é chamado de “stickiness” e é uma das principais consequências da complexa
estrutura hierárquica de ilhas ao redor de ilhas no mar caótico. O stickiness afeta as proprieda-
des globais de transporte do sistema e a convergência dos expoentes de Lyapunov. Nesta tese,
analisamos medidas dinâmicas alternativas para a quantificação do movimento caótico e a de-
tecção do efeito de stickiness em sistemas Hamiltonianos. Inicialmente, consideramos o mapa
padrão, que é um sistema simples e paradigmático que exibe todas as características de siste-
mas Hamiltonianos quase-integráveis. Primeiro, introduzimos uma medida dinâmica proposta
recentemente baseada na teoria ergódica e uma média ponderada de Birkhoff. Ao usar essa me-
dida, distinguimos com sucesso caos e regularidade para diferentes valores do parâmetro de não
linearidade k do mapa padrão, e aplicamos essa medida em conjunto com o método de fração
de incerteza para determinar a dimensão fractal da fronteira das ilhas para um valor especial de
k, a saber, k = 6.908745. Para esse valor, o espaço de fase do mapa padrão é composto por
uma estrutura hierárquica auto-similar de ilhas dentro do mar caótico, e mostramos que quanto
mais fundo entramos nessa estrutura, mais tempo leva para as órbitas escaparem da região de
aprisionamento, e maior se torna a dimensão da fronteira. Além disso, a dimensão depende da
posição no espaço de fase, bem como da escala da incerteza da condição inicial, o que implica
na existência de uma dimensão fractal efetiva. Como medida adicional, propomos o uso de uma
medida baseada na entropia dos plots de recorrência (RPs). Estimamos os tempos de recorrência
de uma órbita a partir do RP e calculamos a entropia de Shannon de sua distribuição, conhecida
como entropia dos tempos de recorrência (RTE). Descobrimos que a RTE é uma maneira alter-
nativa de detectar órbitas caóticas e regiões de stickiness. Mostramos que o maior expoente de
Lyapunov e a RTE exibem um coeficiente de correlação elevado, mesmo ao considerar séries
temporais relativamente pequenas (5000 pontos). Ao calcular a RTE em janelas de tempo me-
nores ao longo da evolução de uma única órbita caótica, descobrimos que a distribuição da RTE
a tempo finito possui vários modos quando regiões de stickiness estão presentes no espaço de
fase, e identificamos, com sucesso, as regiões específicas no espaço de fase que correspondem
a cada modo. Também quantificamos a duração de cada regime de stickiness e descobrimos
que a distribuição cumulativa de tempos de aprisionamento nas regiões de stickiness exibe uma
cauda de lei de potência, enquanto a distribuição quando a órbita vagueia no mar caótico exibe
um decaimento exponencial. Procurando-se uma análise mais robusta das medidas dinâmicas
mencionadas anteriormente, consideramos outro sistema Hamiltoniano bidimensional com um
espaço de fase hierárquico: o sistema de bilhar. Verificamos que essas medidas caracterizam
todo o comportamento dinâmico de tal sistema, com a vantagem de não dependerem da matriz
Jacobiana para o seu cálculo, ao contrário dos expoentes de Lyapunov.

Palavras-chave: sistemas Hamiltonianos quase-integráveis, efeito de stickiness, média ponde-
rada de Birkhoff, gráficos de recorrência, entropia dos tempos de recorrência.



LIST OF FIGURES

Figure 2.1 – Time evolution of the phase space volume Γ1 to Γ2. Liouville’s theorem

states that Γ1 = Γ2 = const. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.2 – Schematic representation of a two-dimensional torus. . . . . . . . . . . . . 26

Figure 2.3 – Time evolution of a trajectory in phase space and its successive intersection

with the Poincaré section Ω. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.4 – The neighborhood of a resonant torus. (a) Illustration of an integrable sys-

tem, where the middle curve represents the rational torus with rotation num-

ber � = r∕s (s = 2 in this illustration). The inner and outer curves represent

the irrational tori. (b) Illustration of the perturbed system. The intersections

between the dashed and full lines are the fixed points of the s-fold iterated

Poincaré map. The inner and outer curves represent the irrational tori that

survive the perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.5 – Neighborhood of an elliptic point (on the left) and a hyperbolic point (on

the right). The orbits that circle about the elliptic point in elliptical trajec-

tories are called elliptical orbits. The thinner lines in the figure on the right

represent hyperbolic orbits that move away from the hyperbolic point in all

directions. The thicker lines are the asymptotes (stable and unstable direc-

tions) of the hyperbolic point. . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.6 – Schematic representation of the phase space of a two-dimensional Hamilto-

nian system, where the chaotic sea is depicted in gray and the regular island

in white. Within this island, there exist KAM tori, and surrounding the is-

land are the remnants of a destroyed KAM torus, known as the cantorus. . . 35

Figure 3.1 – The phase space of the standard map for 100 randomly chosen initial con-

ditions iterated for N = 1.5 × 104 times with (a) k = 0.0, (b) k = 0.9, (c)

k = 1.5, (d) k = 3.63, (e) k = 5.3, and (f) k = 9.0. . . . . . . . . . . . . . . 37

Figure 3.2 – Temporal evolution of a two-dimensional sphere of initial conditions around

the point x0, where �i(t) denotes the length of its ith axis at time t. . . . . . 40

Figure 3.3 – The Lyapunov exponents time series of the standard map (3.3) with k = 1.5

and initial condition (�0, p0) = (3.0, 0.0). In blue is the largest Lyapunov

exponent, �1, and in red the smallest Lyapunov exponent, �2. As has been

stated in the text, due preservation of phase space volume, the sum of all

Lyapunov exponents must be zero, which is verified by the black curve, �1+�2. 43



Figure 3.4 – The phase space and the largest Lyapunov exponent time series of the stan-

dard map with (a) k = 0.9 and initial conditions (black) (�0, p0) = (3.0, 0.0),

(red) (�0, p0) = (�,−�∕2 − 0.12), (blue) (�0, p0) = (�,−2.55), and (green)

(�0, p0) = (�, �∕2+0.11), and with (b) k = 1.5 and initial conditions (black)

(�0, p0) = (3.0, 0.0), (red) (�0, p0) = (2.87, 0.0), (blue) (�0, p0) = (−�,−2.0),

and (green) (�0, p0) = (3�∕2,−�). . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.5 – (a) The FTLE “time series” and (b) the FTLE probability distribution of

the standard map with k = 1.5 and initial conditions (black) (�0, p0) =

(3.0, 0.0), (red) (�0, p0) = (2.87, 0.0), (blue) (�0, p0) = (−�,−2.0), and

(green) (�0, p0) = (3�∕2,−�). . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.6 – (a) The phase space and (b) the largest Lyapunov exponent time series of

the standard map for k = 1.5 and T = 2 × 106 with initial condition (red)

(�0, p0) = (3.0, 0.0), (blue) (�0, p0) = (0.0, 0.0), (green) (�0, p0) = (0.25, 0.0),

(purple) (�0, p0) = (0.5, 0.0), (yellow) (�0, p0) = (0.75, 0.0), and (cyan)

(�0, p0) = (1.25, 0.0). The convergence rate of �1 towards zero is differ-

ent for different initial conditions, where the fastest convergence rate is for

the fixed point itself (red curve). . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.7 – The largest Lyapunov exponent for a 1000 × 1000 grid of uniformly chosen

values of (a) (k, �0) with p0 = 0, and (b) (k, p0) with �0 = 0 and T = 1.0 × 104. 45

Figure 3.8 – The diffusion coefficient, Eq. (3.45), for the standard map as a function of the

nonlinearity parameter, with Δk = 0.025 for (green) n = 1.0 × 103, (blue)

n = 5.0 × 103, and (red) n = 1.0 × 104. In black dashed line is the theoretical

value for the standard map as predicted in (3.44). We considered 100 × 100

initial conditions uniformly distributed in a grid on the entire phase space

[0, 2�] × [0, 2�]. Inset: magnification on the interval k ∈ [6, 8] that shows

the groups II and III of accelerator mode islands. We observe a deviation of

the numerically calculated diffusion coefficient from its theoretical value. . 51

Figure 3.9 – The variance of the momentum,
⟨
(p − p0)

2
⟩

, as a function of the number

of iterations n for (red) k = 6.0, (blue) k = 6.25, (green) k = 6.5, (cyan)

k = 6.625, (brown) k = 6.75, and (yellow) k = 7.0. The black dashed

(dotted) line indicates the slope of � = 1 (� = 2). We considered 30 × 30

initial conditions uniformly distributed in a grid on the entire phase space

[0, 2�] × [0, 2�]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Figure 4.1 – The number of zeros after the decimal point of the convergence of the weighted

Birkhoff average, dig [Eq. (4.5)], for a grid of 1000 × 1000 uniformly dis-

tributed initial conditions in the phase space region depicted of the standard

map (3.3), with (a) k = 0.9, (b) k = 1.5, (c) k = 3.93, (d) k = 4.0, (e)

k = 5.3, and (f) k = 6.908745. The total iteration time is 2N = 2.0 × 106,

and ℎ(�, p) = cos �. The regular regions are characterized by high values of

dig (red), while the chaotic ones by small values of dig (blue). . . . . . . . 56

Figure 4.2 – Histograms of the values of dig shown in Figure 4.1. There are mainly two

peaks, each one characterizing one dynamical regime. The peak for small

values of dig corresponds to chaotic orbits, while the peak for larger values

of dig to regular orbits. There are orbits with an intermediate value of dig,

and they are trapped orbits whose value of dig has yet not converged its

asymptotic value. We note that as k increases, the proportion of regular

orbits diminishes, as expected. . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.3 – The normalized proportion of regular orbits as a function of the cutoff value

digc for the data in Figures 4.1 and 4.2. For small and large values of dig,

the proportion changes significantly, however, there is an interval around

digc ∈ [5, 12] in which the proportion is almost constant. . . . . . . . . . . 57

Figure 4.4 – A region in phase space with two different final states, A and B, divided by

the boundary. A and B can represent either two different attractors or the

boundary of an island. Points 1 and 2 are initial conditions with uncertainty ". 58

Figure 4.5 – The uncertainty fraction as a function of " for the phase space region de-

picted in Figure 4.1(d) with k = 4.0. We observe a power law dependence

with exponent � = 0.371 ± 0.009. We chose 5.0 × 104 random initial con-

ditions for each value of ", and we performed this simulation ten times. We

computed the uncertainty exponent for each one of the ten simulations and

took its mean and standard deviation: � = � ± ��. . . . . . . . . . . . . . 60

Figure 4.6 – The phase space of the standard map with k = 6.908745 for 100 randomly

chosen initial conditions distributed (a) in the entire phase space [−�, �] ×

[−�, �] and (b)-(f) in the regions delimited by the first five rows of Table

4.1. Figures (b)-(f) are magnifications around the islands marked by a red box. 61

Figure 4.7 – The escape time for a grid of 1000 × 1000 uniformly distributed initial con-

ditions in the regions given in Table 4.1 for the standard map with k =

6.908745. Figures (b)-(e) are magnifications around the indicated islands

and the color bar is in logarithmic scale. . . . . . . . . . . . . . . . . . . . 62



Figure 4.8 – The uncertainty fraction as a function of " for (a)-(e) the phase space regions

shown in Figure 4.7 and given by Table 4.1 and (f) for the region around the

central island in Figure 4.7(a) given by the last row of Table 4.1. We observe

a power law dependence, however, now it is possible to associate different

exponents with different intervals of ". We choose 5.0 × 104 random initial

conditions for each value of ", and we perform these simulations twenty-five

times for (a) and (b) and ten times for (c)-(f). We compute the uncertainty

exponent for each one of these simulations and take its mean and standard

deviation: � = � ± ��. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.1 – Examples of recurrence matrix for different dynamical processes. (a) Uni-

formly distributed white noise, generated using the Numpy (123) function

random.normal with zero mean and standard deviation equals to unity, (b)

periodic dynamics, generated using a sine wave x(t) = sin(t), for t ∈ [0, 50],

(c) quasiperiodic dynamics (�1 = 0.00014), generated using the standard

map (3.3) with k = 1.5, and initial condition (�0, p0) = (1.0, 0.0), (d) chaotic

dynamics (�1 = 0.43214), generated using the standard map (3.3) with

k = 1.5 and initial condition (�0, p0) = (2.85, 0.0), (e) chaotic dynamics

(�1 = 0.33276), generated using the standard map (3.3) with k = 1.5 and ini-

tial condition (�0, p0) = (1.6, 0.0), and (f) chaotic dynamics (�1 = 2.18496),

generated using the standard map (3.3) with k = 9.0 and initial condition

(�0, p0) = (3.0, 0.0). The threshold is " = �∕100 in (a) and " = �∕10 for

(b)-(f), where � is the standard deviation of the time series. The Lyapunov

exponent of (c)-(f) have been calculated considering 1.0 × 105 iterations. . 70

Figure 5.2 – The number of unique recurrence times, � , for 1000 × 1000 uniformly

distributed initial conditions in a grid on the entire phase space [−�, �] ×

[−�, �] for k = 1.5. Each initial condition is chosen as the center of the

recurrence region, with size " = �∕10, where � is the standard deviation of

the time series generated by it. We iterate each initial condition for 2 × 106

times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.3 – (a) The largest Lyapunov exponent, (b) the recurrence rate, the RQA mea-

sures (c)-(g) based on diagonal lines, given by Eqs. (5.12)-(5.16), respec-

tively, and (h)-(k) based on vertical lines, given by Eqs. (5.18)-(5.21), re-

spectively, and (l) the recurrence time entropy [Eq. (5.23)] as a function of

the nonlinearity parameter k, with a step of Δk = 0.001. The length of the

time series is N = 5000, and for each parameter value, we choose a fixed

initial condition of (�0, p0) = (0.0, 1.3). . . . . . . . . . . . . . . . . . . . . 75



Figure 5.4 – (a)-(c) The largest Lyapunov exponent, �1, and (d)-(f) the recurrence time

entropy, RTE, for a 1000 × 1000 uniformly distributed initial conditions in

a grid in phase space with k = 1.5, for (a), (b), (d), and (e) and in parameter

space (k, p), with �0 = 0.0 for (c) and (f). Panels (b) and (e) are magnifica-

tions of the white boxes in (a) and (d), respectively, and the dotted white line

in (c) and (f) represents the initial condition used in Figure 5.3. . . . . . . . 77

Figure 5.5 – The RTE for a grid of 1000 × 1000 uniformly distributed initial conditions in

the depicted phase space regions of the standard map (3.3), with (a) k = 0.9,

(b) k = 1.5, (c) k = 3.93, (d) k = 4.0, (e) k = 5.3, and k = 6.908745.

For each initial condition, we use a time series of length N = 5000. The

regular orbits are characterized by small values of RTE (black to blue) while

the chaotic orbits by a large value of RTE (green to red). The black points

correspond to orbits for which none, or only one return time has been found.

Increasing the length of the time series should decrease the size of the black

regions. These regions also indicate the position of the elliptic points. . . . 78

Figure 5.6 – (a) The finite-time RTE probability distribution for a single chaotic orbit

with n = 200, N = 1.0 × 1010, k = 1.5, and (�0, p0) = (−3.0, 0.0). (b) The

finite-time RTE “time series” for the interval [40000, 70000]. The transitions

between different regimes within the orbit’s dynamics are clear. Panel (c) is

the phase space points that generate the minor maxima in (a) and (d) is a

magnification of one of the period-6 satellite islands of (b) indicated by the

red box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.7 – (a) The phase space points that generate the larger peak for high values of

RTE in Figure 5.6(a) and (b) the log-log plot of the cumulative distribution

of trapping times, Q(�), for each sticky region identified in Figure 5.6(a)

with N = 1011 and n = 200 (colored dots). The inset is the log-lin plot of

Q(�) of the phase space points shown in (a). The colors of the dots in (b)

match the colors of Figure 5.6(a). . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.8 – (a) The standard deviation, �, as a function of k for the orbit with initial

condition (�0, p0) = (1.3, 0.0) iterated for 5000 times, using the (black) con-

catenation approach and the (red and blue) norm approach, considering the

maximum and Euclidean norms, respectively, and (b) the correlation coef-

ficient between �1 and RTE, both evaluated in the interval k ∈ [0, 5], as a

function of the threshold " in units of the percentage of �. . . . . . . . . . . 82

Figure 6.1 – The billiard boundary for (a) 
 = 1, (b) 
 = 2, (c) 
 = 3, (d) 
 = 4, (e)


 = 5, and (f) 
 = 6 with different values of �, namely, (black) � = 0.0, (red)

� = 0.15, (blue) � = 0.30, (green) � = 0.75, (cyan) � = 0.90, and (purple)

� = 0.99999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Figure 6.2 – (a) Illustration of two collisions on the billiard boundary and the angles used

in the billiard map. Panels (b) and (c) illustrate the algorithm for finding the

next collision point, discussed in the text. . . . . . . . . . . . . . . . . . . 87

Figure 6.3 – The phase space of the billiard map (6.11) with the boundary implicitily

defined by Eq. (6.4) for 75 randomly chosen initial conditions iterated for

N = 3.0 × 103 times with (a)-(d) 
 = 1, (e)-(h) 
 = 2, and (i)-(l) 
 = 3. Each

column corresponds to different values of �, namely, (a), (e), (i) � = 0.4,

(b)(f)(j) � = 0.6, (c)(g)(k) � = 0.8, and (d)(h)(l) � = 0.99999. . . . . . . . . 89

Figure 6.4 – The configuration space of the billiard map for four different initial condi-

tions with (a)-(d) 
 = 1, (e)-(h) 
 = 2, and (i)-(l) 
 = 3. Each column

corresponds to different values of �, namely, (a), (e), (i) � = 0.4, (b)(f)(j)

� = 0.6, (c)(g)(k) � = 0.8, and (d)(h)(l) � = 0.99999. The respective orbit

in phase space is shown as colored lines in Figure 6.3. . . . . . . . . . . . . 90

Figure 6.5 – The determinant of the Jacobian matrix in terms of (black) (�, �) and in terms

of (red) the Birkhoff coordinates (s, p) for 
 = 1 and � = 0.6 with (�0, �0) =

(�, �∕2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 6.6 – The largest Lyapunov exponent as a function of the parameter � for Δ� =

0.001 with (black) 
 = 1 and (�0, �0) = (�, �∕2), (red) 
 = 2 and (�0, �0) =

(�∕2, �∕2), and (blue) 
 = 3 and (�0, �0) = (�, 1.08). For each value of �,

we consider N = 1.0 × 108 collisions. The vertical dashed lines indicates

the values of � of Figure 6.7. . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 6.7 – (a)-(c) The phase space of a single chaotic orbit with initial conditions (a)

(�0, �0) = (�, �∕2), (b) (�0, �0) = (�∕2, �∕2), and (c) (�0, �0) = (�, 1.08)

for N = 2 × 106 collisions. (d)-(f) The largest Lyapunov exponent, �1
[Eq. (3.20)], (g)-(i) dig quantity [Eq. (4.5)], and (j)-(l) the recurrence time

entropy, RTE [Eq. (5.23)], for 1000 × 1000 initial conditions uniformly

distributed in a grid on the entire phase space. Each column corresponds to

specific values of 
 and � [dashed vertical lines in Figure 6.6]: (left column)


 = 1 and � = 0.785, (middle column) 
 = 2 and � = 0.549, and (right

column) 
 = 3 and � = 0.375. . . . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF TABLES

Table 4.1 – The first five rows corresponds to the phase space regions shown in Figures

4.6(b)-(f) and 4.7 given by
{
�, p | �0 ≥ � ≥ �1, p0 ≥ p ≥ p1

}
. The last row

corresponds to the phase space region around the central island in 4.6(b) and

4.7(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 4.2 – The uncertainty exponent �, the dimension d, and the mean escape time

⟨Tesc⟩ of the phase space regions shown in Figure 4.7 and given by Table

4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 5.1 – The correlation coefficient, � [Eq. (5.24)], between �1 and each one of the

corresponding RQA measures for the standard map (3.3) in the interval k ∈

[0, 5] (Figure 5.3) with a time series of lengthN = 5000 and initial condition

(�0, p0) = (0.0, 1.3) for each parameter value. . . . . . . . . . . . . . . . . . 76



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 HAMILTONIAN SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 HAMILTONIAN SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 INTEGRABLE SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 QUASI-INTEGRABLE SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 THE KAM THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 POINCARÉ SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 THE POINCARÉ-BIRKHOFF THEOREM . . . . . . . . . . . . . . . . . . . . . . 32

3 THE STANDARD MAP – A BRIEF SURVEY . . . . . . . . . . . . . . . . . . . . 36

3.1 THE KICKED ROTOR – THE STANDARD MAP . . . . . . . . . . . . . . . . . . 36

3.2 LYAPUNOV EXPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 DIFFUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 The Fokker-Plank-Kolmogorov Equation . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Normal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Anomalous Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 EFFECTIVE FRACTAL DIMENSION AND STICKINESS . . . . . . . . . . . . 54

4.1 WEIGHTED BIRKHOFF AVERAGE . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 FRACTAL DIMENSION AND UNCERTAINTY EXPONENT . . . . . . . . . . . 58

4.3 EFFECTIVE FRACTAL DIMENSION . . . . . . . . . . . . . . . . . . . . . . . . 60

5 CHARACTERIZATION OF STICKINESS USING RECURRENCE PLOTS . . 66

5.1 RECURRENCE PLOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Structures in a Recurrence Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Recurrence Quantification Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.4 RQA Measures for the Standard Map . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 RECURRENCE TIME ENTROPY . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 THE EFFECT OF THE THRESHOLD ON THE RTE . . . . . . . . . . . . . . . . 81

6 DYNAMICAL PROPERTIES OF A BILLIARD MODEL . . . . . . . . . . . . . 83

6.1 BILLIARD DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 MODEL AND MAPPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX A – PUBLISHED PAPERS . . . . . . . . . . . . . . . . . . . . . . . . . 111



15

1 INTRODUCTION

The ancient Greek philosophers were pioneers in suggesting that abstract principles govern

nature, and the earliest formal exploration of mechanics can be attributed to the era of Aristotle

(384 – 322 B. C.). During the ancient Greek period, the prevailing belief was that physical

entities were subject to changes, while celestial entities such as the Sun and stars remained

unchanged. In his seminal work Physics, Aristotle established principles of change that govern

all natural bodies. He categorized these changes into four distinct types: (i) change of place

(motion), (ii) changes of substance (such as the transformation of the elements earth, water, air,

and fire into each other, “coming to be”, and as well as “passing away”), (iii) change in quantity

(size or number), and (iv) change in quality or alteration (e.g. a hot object becomes a cold

object) (1, 2).

Aristotle introduced a dichotomy between natural and violent change (1,2). Natural entities,

composed of the four elements, exhibit inherent natural motion: those composed of earth and

water possess a tendency to fall, seeking their place at the center of the Earth (and the Universe),

while those composed of air and fire display a tendency to rise. Violent change, on the other

hand, refers to any externally imposed motion on an object, and once the external force ceases,

the object comes to rest.

An additional work from Aristotle’s era is the pseudo-Aristotelian Problems of Mechanics,

which is considered to be one of the first surviving ancient Greek texts on mechanics (3, 4).

The actual authorship of this book, whether it originated from Aristotle himself or a successor,

remains uncertain, hence the prefix “pseudo”. This work delved into practical mechanical prob-

lems, primarily concerning simple machines. In the introduction, the author posed 35 questions,

primarily centered around the principle of the lever, which played a seminal role in shaping me-

chanics throughout the ancient Greek period and well into the Medieval Age.

Today many of Aristotle’s principles have been proved wrong. However, it is important to un-

derstand that this was just the beginning of scientific knowledge. Aristotle’s contributions built

the foundations to the development of science and he started a tradition of systematic and logi-

cal thinking to comprehend dynamics and nature, thereby providing a cornerstone upon which

subsequent thinkers would build and refine their understanding.

The Aristotelian ideas of motion lasted for almost two millennia. It was only during the

Middle Ages that his theory of motion came under criticism from scholars like John Philoponus

(490 – 570 A. D.) and Ibn Sina, commonly known in the West as Avicenna (980 – 1037 A. D.).

The central problem was the projectile motion, i.e., why does a pebble continue to move after

it has been thrown? Aristotle failed to answer this question and his idea of violent motion led

Avicenna to introduce the concept of impetus (1) in The Book of Healing (1020) (5). In his

book, Avicenna challenged Aristotelian mechanics and engaged in debates about the nature of

motion, force, and the relationship between philosophy and science. These debates set the stage
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for the gradual departure from pure philosophical reasoning and the incorporation of empirical

observations and experimentation.

It was not until the experimental work and observations of Nicolaus Copernicus (1473 –

1543), Tycho Brahe (1546 – 1601), Johannes Kepler (1571 – 1630), and René Descartes (1596

– 1650) that the Aristotelian mechanics was abandoned altogether. However, the ones who in fact

put an end to the reign of Aristotle’s ideas were Galileo Galilei (1564 – 1642) and Isaac Newton

(1642 – 1727). Galileo is considered by many the father of modern science. He developed the

telescope and his observations that the heavens may not be as perfect as Aristotle had thought

was the first convincingly study to discredit Aristotle’s ideas. He also was the first to develop

mechanics and kinematics in the way we know today. And even though it is highly debatable

whether the famous Tower of Pisa experiment in fact happened or not, Galileo did carry out

experiments with rolling balls on an inclined plane (6) and he correctly predicted that all objects

fall at the same rate regardless of their mass. He was the first to state that uniform motion is

indistinguishable from rest, laying the basis of the theory of relativity, and he also formulated

the law of inertia, although today it is known as Newton’s first law.

In 1687, Newton published his pioneering book Philosophiæ Naturalis Principia Mathemat-

ica (Mathematical Principles of Natural Philosophy), popularly known as Principia. He defined

for the first time concepts of space, mass, and quantity of motion (momentum), and most impor-

tantly, he provided a detailed mathematical description of mechanics using the newly developed

mathematics of calculus, also invented by himself. He stated three laws which we know today as

Newton’s law of motion laying the ground for Newtonian mechanics. These laws can be stated

as follows:

1. Every body perseveres in its state of rest, or of uniform motion in a right line unless it is

compelled to change that state by forces impressed thereon.

2. The alteration of motion is ever proportional to the motive force impressed; and is made

in the direction of the right line in which that force is impressed.

3. To every action there is always opposed an equal reaction: or the mutual action of two

bodies upon each other are always equal, and directed to contrary parts.

The first law is essentially Galileo’s law of inertia and it defines the term force. The second law

relates force to mass and acceleration

F =
dp

dt
= m

d2x

dt2
,

where the right-hand side is obtained given a constant mass, i.e., m(t) ≡ m = const. And even

though the third law can be derived from the second law for rigid bodies (7, 8), it is, in general,

an independent law. These laws are based on experiments and, therefore, cannot be derived from

some other law.
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Another of Newton’s astonishing accomplishment was the derivation of the universal law of

gravitation which states that every object of matter in the Universe attracts every other object

with a force that is directly proportional to the product of their masses and inversely proportional

to the square of the distance between their centers along the line of the centers of the two objects.

This law correctly predicts planetary motion, although it has some flaws. The orbit followed by

Mercury, for instance, is not the one predicted by Newton’s law. However, it is important to

understand the impact all these laws had on the scientific society at the time. From this point in

History on, it was possible to use these mathematical tools to predict, in principle, the state of

any object in the Universe given the forces that act upon it. This idea is what call today Newton’s

deterministic principle (8, 9), i.e., the state of a system is given by the positions and velocities

of the system’s particles in a given instant of time, and the forces acting upon them uniquely

determine the system’s motion. This led Pierre-Simon Laplace (1749 – 1827) to state in his

book Essai philosophique sur les probabilités (A philosophical essay on probabilities) (10) the

following:

We may regard the present state of the universe as the effect of its past and the cause of

its future. An intellect that at a certain moment would know all forces that set nature in

motion, and all positions of all items of which nature is composed, if this intellect were

also vast enough to submit these data to analysis, it would embrace in a single formula the

movements of the greatest bodies of the universe and those of the tiniest atom; for such an

intellect nothing would be uncertain and the future just like the past could be present before

its eyes.

This statement, however, has been proved wrong even in the realm of classical mechanics (with-

out even talking about quantum or relativistic mechanics) due to the existence of chaotic motion,

which we will discuss shortly.

During the time of Newton, given the success of his theory of mechanics and the invention

of calculus, scientists began to propose challenging problems worth solving. One such problem

was the problem of the brachistochrone (shortest time). Johann Bernoulli (1667 – 1748) posed

the following problem:

Given two points A and B in a vertical plane, what is the curve traced out by a point acted

on only by gravity, which starts at A and reaches B in the shortest time?

According to legend, Newton managed to solve this problem shortly after first encountering it.

This particular problem played a significant role in the development of the calculus of varia-

tions (7). The calculus of variations focuses on determining the extrema (either maximum or

minimum) of functionals, which are often integrals involving functions and their derivatives.

Several authors have contributed to this field, however, it was Leonhard Euler (1707 – 1783) the

first to elaborate on the subject. Inspired by Euler’s work, Joseph-Louis Lagrange (1736 – 1813)

introduced an alternate formulation of mechanics, based on the system’s energy rather than the

individual forces that act upon it. The result of both the calculus of variation and Lagrange’s



18

new formulation of mechanics came to be known as the Euler-Lagrange equation, given by

)
)q

−
d

dt

)
)q̇

= 0,

where q and q̇(t) = dq∕dt , in the context of mechanics, are the independent generalized coordi-

nate and velocity, respectively, and  ≡ (t, q, q̇) is the function which makes the functional

S[] = ∫
t2

t1

(t, q(t), q̇(t)) dt

an extreme (either maxima or minima) with constant t1 and t2. Lagrange’s greatest contribution

was realizing that by defining , the Lagrangian function, as the difference between the kine-

matic energy and the potential energy of the system,  = T − V , and by defining the functional

S[] as the action of a mechanical system, one recovers the equations of motion when solving

the Euler-Lagrange equation for conservative systems. This is based on the principle of least ac-

tion, also known as Hamilton’s principle, which states that the path taken by a physical system

between two points in time is the one for which the action is minimized or stationary (7).

In 1833 the most important step in classical mechanics was taken with the work of William

Rowan Hamilton (1805 – 1865). He reformulated the Lagrangian mechanics by defining a Leg-

endre transformation (11) of  with (q, q̇) → (p, q), where he defined p = )∕)q̇ as the gen-

eralized (also conjugated or canonical) momentum. This transformation is assumed to have an

inverse (p, q) → (q, q̇). Hamilton then introduced the Hamiltonian function, (p, q, t), in terms

of the Lagrangian as

(p, q, t) = pq̇ − (q, q̇, t).
The Hamiltonian function is often called the energy function as when certain conditions are

satisfied,  equals the total mechanical energy of the system, i.e.,  = T + V .

Lagrange’s and Hamilton’s formalisms of mechanics both have their individual advantages.

For instance, it is possible to modify the Euler-Lagrange equation to include the Lagrange mul-

tipliers, which yield information about the constraint forces. Hamiltonian mechanics, on the

other hand, provides a direct link between classical and quantum mechanics. The scope of this

thesis relies on Hamiltonian systems, which, in simple terms (more details on Chapter 2), are

any system where its dynamics is completely described by the Hamiltonian function. Examples

of Hamiltonian systems are the motion of the planets and astronomical objects, the motion of

ideal fluids or vortices, and the motion of a charged particle on a magnetic field, which can be

used to confine plasma particles, to cite a few.

Up to this point in History, it was believed in a deterministic Universe, as we have men-

tioned. This perception was challenged when Jules Henri Poincaré (1854 – 1912) was trying to

solve whether the solar system was stable or not. To simplify the problem, he considered the

gravitational interaction of only three objects, and he demonstrated that given an arbitrary initial

condition, it was not possible to obtain an analytical solution even for this simple system (12).
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Only a few particular initial conditions result in exact solutions and he demonstrated that small

changes in the initial conditions lead to a significant difference in the final state of the system,

i.e., the system is unpredictable. However, this unpredictability comes from the fact that it is

impossible to know the exact value of the initial conditions. If one were to know the particles’

positions and velocities with an infinite precision, then one would know for certain the future

state of any system. Nevertheless, the measurement devices and numerical simulations have an

intrinsic uncertainty (either the device’s precision or the number of digits in the simulation),

which leads to a rapidly divergence. This fast loss of information is the so-called deterministic

chaos, or simply chaos.

Until Poincaré’s work, it was believed that Hamiltonian systems could exhibit only regular

solutions, i.e., periodic or quasiperiodic solutions. After Poincaré’s breakthrough, the interest in

studying Hamiltonian systems that exhibit such a behavior grew fast and the question regarding

the source of non-integrability arose. Given an integrable Hamiltonian system, how strong must

a perturbation be so that the system is no longer integrable? In other words, how robust is the

integrability when the Hamiltonian is slightly perturbed? It was only in the middle of the 20th

century that this question began to be answered when Andrey Nikolaevich Kolmogorov (1903 –

1987) demonstrated that most of the quasiperiodic solutions (nonresonant tori) survive for small

perturbations (13). Only the periodic orbits (resonant tori) and their neighborhood are destroyed.

Almost a decade later, Jürgen Kurt Moser (1928 – 1999) rigorously proved Kolmogorov’s con-

jecture for discrete area-preserving maps of an annulus (14) and Kolmogorov’s student, Vladimir

Igorevich Arnold (1937 – 2010), proved the conjecture for an analytical Hamiltonian (15). This

result came to be known as the Kolmogorov-Arnold-Moser (KAM) theorem and it is the greatest

contribution to classical mechanics of the 20th century.

Although there is no mathematical proof, it is believed that a typical Hamiltonian system ex-

hibits both regular (periodic or quasiperiodic orbits) and chaotic components. Extensive numer-

ical data indicates that this is true and these systems are referred to as quasi-integrable systems or

systems with divided phase space. We can construct such a system by perturbing an integrable

Hamiltonian and the remnants of the destroyed resonant tori form a chain of stable and unstable

periodic orbits, as stated by another theorem of paramount importance: the Poincaré-Birkhoff

theorem. The regular islands are located around the stable orbits and it is the instability of the

unstable orbits the source of chaotic behavior. The coexistence of regular and chaotic domains

is the origin of nonergodicity. A system in which almost all initial conditions (the exceptions

have zero measure) produce chaotic solutions is called fully chaotic and a system where all of

the phase space belongs to the same chaotic component is called ergodic (16).

In two-dimensional Hamiltonian systems, the tori that survive the perturbation, which are

called KAM tori, form impenetrable barriers to the transport of chaotic orbits, i.e., a chaotic

orbit will never cross an island, and an originally regular orbit will never reach the chaotic sea.

In higher dimensional systems, the codimension between the KAM tori and the phase space

is greater than 1, and the tori do not separate the phase space into distinct and disconnected
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domains. In this case global transport occurs, which is called Arnold diffusion (17). As the

perturbation grows stronger, the nonresonant tori are destroyed and their remnants form Cantor

sets (18) named cantori (19, 20). Even though the KAM theorem is only valid for sufficiently

smooth and weak perturbations, this scenario of the destruction of invariant tori is observed in

a broader context. The phase space of a typical Hamiltonian system consists of an infinite hier-

archical structure of islands-around-islands embedded in the chaotic sea. The latter constitutes

a fat fractal (21), which is a fractal set with an invariant measure (volume of the islands) greater

than zero. Therefore, the exact boundary between the islands and the chaotic sea is extremely

difficult to determine.

For the special case of two-dimensional systems, while the KAM tori are impenetrable barri-

ers, the cantori form partial barriers to the transport in phase space as the chaotic orbits may still

pass through one of the gaps in the cantori. This allows chaotic orbits to become trapped inside

the region bounded by the cantori for long but finite periods of time. While trapped, a chaotic

orbit behaves similarly to a quasiperiodic orbit and this leads to long periods of intermittency

in the orbit’s dynamics. This phenomenon is known as stickiness (22–33), and these successive

trappings affect transport properties of the system such as the decay of temporal correlations,

leading to non-standard statistical properties. Fully chaotic systems display rapidly decaying

(exponential) temporal correlations (34, 35). The tent map (36) and Arnold’s cat map (37) are

examples of such systems, and we classify them as strongly chaotic systems since there are no

regular structures in their phase space. For systems with divided phase space, the phenomenon

of stickiness emerges and it causes a slower algebraic decay of temporal correlations and it af-

fects the recurrence times statistics as well (27, 28, 38–45). The stickiness effect also leads to

anomalous transport (27,46–50). These systems are often referred to as weakly chaotic systems.

The importance of the phenomenon of stickiness was first noted by Contopoulos (22) in

the context of celestial mechanics. Altmann et al. (31, 32) demonstrated that stickiness in a

two-dimensional Hamiltonian system with non-hierarchical phase space is due to a family of

marginally unstable periodic orbits (MUPOs) (38). Cristadoro and Ketzmerick (28) described

the generation of stickiness in two-dimensional Hamiltonian systems with a mixed and hierar-

chical phase space, where they conjectured a universal power law decay of correlations. Con-

topoulos and Harsoula (29,30) demonstrated that in addition to the stickiness due to the cantori

that surround regular islands, there is another type of stickiness caused by the unstable asymp-

totic curves of unstable periodic orbits. They also established a relationship between the escape

time through a cantorus with the largest eigenvalue of the unstable periodic orbit, with the size

of the opening in the cantorus, and with the distance of the initial condition from the cantorus.

As for the quantification of the stickiness effect, the Lyapunov exponents (51–53) have been

extensively used for such a task (54, 55). The Lyapunov exponents are a mathematical tool for

quantifying chaotic behavior and they are the average exponential rate of divergence or con-

vergence of nearby orbits in phase space. A chaotic orbit is characterized by a positive largest

Lyapunov exponent, and while the chaotic orbit is trapped, it becomes “less” chaotic and the
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value of the largest Lyapunov exponent decreases. In this way, it is possible to detect when an

orbit enters a sticky region and also measure the time it remains trapped (54, 55). The recur-

rence time statistics (31, 32, 44, 45, 56) and the finite-time rotation number (57, 58) have also

been employed for the detection of sticky orbits. However, due to the stickiness influence on the

value of the Lyapunov exponents, which makes their convergence slower, they are not the op-

timal choice for distinguishing chaos and regularity for two-dimensional Hamiltonian systems.

Therefore, we intend to explore alternate dynamical measures for the quantification of chaotic

behavior in two-dimension Hamiltonian systems, and we use the paradigmatic standard map (or

Chirikov-Taylor map) (59) as our model. We analyze two alternate measures. The first has been

recently proposed and it is based on the ergodic theory for the calculation of time averages in

phase space (60,61) and it relies on the calculation of a weighted Birkhoff average (62–67). The

second measure is the recurrence time entropy (RTE) (68–70) and it is based on recurrence plots

(RPs) (71–76) and on Slater’s theorem (77–79), however, it was defined originally without any

connection with RPs (68). While the first is excellent for distinguishing chaos and regularity,

the second gives us more information about the trappings than the largest Lyapunov exponent

does. Motivated by this, we calculate these measures for a further Hamiltonian system that also

displays a hierarchical phase space: a billiard system.

This thesis is organized as follows. In Chapter 2, we introduce the Hamiltonian systems and

briefly comment on some of the main features of quasi-integrable Hamiltonian systems. We

introduce two of the most important theorems when studying Hamiltonian systems, the KAM

and Poincaré-Birkhoff theorems. We present the conditions on whether the nonresonant tori

are destroyed or not and discuss the fate of resonant tori (Poincaré-Birkhoff theorem) under the

perturbation. In Chapter 3, we make a brief survey on the paradigmatic standard map. We

also introduce the Lyapunov exponents and present an efficient algorithm for their computation

for two-dimensional mappings. We finish Chapter 3 by following Zaslavsky’s derivation of

the Fokker-Plank-Kolmogorov (FPK) equation and comment on the modifications to describe

anomalous transport. Our contributions and new results are presented in Chapters 4-6. Chapters

4 and 5 are devoted to the study of nonstandard dynamical measures to detect and characterize

chaotic behavior in the standard map. In Chapter 6 we introduce another class of Hamiltonian

systems: the billiard system, and we apply these nonstandard measures to the study of a family

of billiards whose shape depends upon two parameters. Chapter 7 contains our final remarks

and by the end of the thesis, we present an appendix listing all the scientific papers published

during the development of this thesis.
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2 HAMILTONIAN SYSTEMS

We start this chapter by discussing the main features of Hamiltonian systems, their inte-

grability conditions, and the effect of a small perturbation on these systems. We then intro-

duce the Kolmogorov-Arnold-Moser (KAM) theorem, which states whether the system exhibits

quasi-periodic motion under small perturbations. In the following, we discuss another theorem

of paramount importance for conservative dynamical systems, namely, the Poincaré-Birkhoff

theorem, which concerns the consequences of a perturbation in the periodic motion and the

emergence of chaotic motion. The discussion of the features of Hamiltonian systems and the

aforementioned theorems is based on Refs. (80–84).

2.1 HAMILTONIAN SYSTEMS

The state of a Hamiltonian system with N degrees of freedom is specified by a generalized

coordinate vector q = (q1, q2,… , qN ) and by a generalized momentum vector p = (p1, p2,… , pN ).

Its dynamics is completely described by a scalar function, (p,q, t), called the Hamiltonian

function, where t represents the time variable. The time evolution of this system is given by

Hamilton’s equations,

dqi

dt
=
)(p,q, t)

)pi
, (2.1a)

dpi

dt
= −

)(p,q, t)

)qi
, (2.1b)

with i = 1, 2,… , N . The solution of Eq. (2.1) determines the trajectory (p(t),q(t)) that the

system follows in the 2N-dimensional space, characterized by the vectors q and p. We call this

space the phase space of the system. Any set of variables (p,q) whose time evolution obeys a

set of equations of the form (2.1) is called canonical, and pi and qi are conjugated variables.

An essential feature of Hamiltonian systems is given by Liouville’s theorem1 on the preser-

vation of the phase space volume. Let dΓt = dpt dqt be an element of phase volume at time t

and let f = f (p,q, t) be a distribution function of particles in phase space, which is normalized

as

∫Γ

f (p,q, t) dΓ = 1. (2.2)

Equation (2.2) corresponds to the conservation of the number of particles. Writing (2.2) in its

differential form, we obtain the continuity equation

)f

)t
+ ∇∇∇(p,q) ⋅ (Jf ) = 0, (2.3)

1 The proof of this theorem can be found in Ref. (9) even for a time-dependent Hamiltonian.
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Figure 2.1: Time evolution of the phase space volume Γ1 to Γ2. Liouville’s theorem states that
Γ1 = Γ2 = const.

q

p

Γ1

Γ2

Source: adapted from Figure 1.1 of Ref. (80).

where J is the current vector in the 2N-dimensional phase space. We can rewrite Eq. (2.3) as

)f

)t
+

N∑

i=1

(
dqi

dt

)f

)qi
+

dpi

dt

)f

)pi

)
= 0,

which is called Liouville’s equation. This equation represents the preservation of the phase space

volume along the evolution of the dynamics. Any deformation in the initial condition volume is

allowed (see Figure 2.1), however, there are no sources nor sinks. In other words, attractors and

repellors are forbidden in Hamiltonian systems due to phase space volume conservation.

An essential concept in Hamiltonian dynamics is the Poisson bracket, which is defined for

two arbitrary functions of the generalized coordinates and momentum, f = f (p,q) and g =

g(p,q), as

[f, g] =

N∑

i=1

(
)f

)qi

)g

)pi
−
)f

)pi

)g

)qi

)
.

By choosing f as the generalized coordinate, or momentum, and g as the Hamiltonian function,

we can rewrite Hamilton’s equations as

dqi

dt
= [qi,],

dpi

dt
= [pi,].

For the general case when f ≡ f (p,q, t), using Hamilton’s equations (2.1), the time derivative

of f can be written as
df

dt
= [f,] +

)f

)t
.

If f does not depend explicitly on time, )f∕)t = 0, and if [f,] = 0 (in this case we say that f

comutes with ), then f is a constant of motion. If the Hamiltonian does not depend explicitly
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on time,  is a constant of motion itself, given that its time derivative is

d(p,q, t)

dt
=
)
)t
,

since [,] = 0. If the Hamiltonian function of a system fulfills the aforementioned conditions,

we call the system an autonomous system.

One of the advantages of Hamilton’s formalism is that instead of solving a set ofN ordinary

differential equations of second order, which is the case of Newtonian and Lagrangian formalism,

we need to solve a set of 2N ordinary differential equations of first order. Furthermore, it is

possible to introduce a convenient change of variables in order to obtain a simpler set of equations

of motion to find the trajectory of the system. However, not all change of variables preserves

the canonical form of Hamilton’s equations (2.1). The change of variables (p,q) → (P,Q)

that preserves the Hamiltonian form of the equations of motion is called canonical and we can

obtain such transformation through generating functions, which depend on one old and one new

variable, as follows:

S1(q,Q, t), S2(q,P, t), S3(p,Q, t), S4(p,P, t).

For example, in terms of S2, the canonical transformation is

pi =
)S2

)qi
, (2.4a)

Qi =
)S2

)Pi
, (2.4b)

(P,Q, t) = (p,q, t) +
)S2

)t
. (2.4c)

With these transformations, we can show, at least in a formal sense, how the equations of

motion can be solved. For the case when the Hamiltonian depends explicitly on time, defining

 ≡ 0 is equivalent to obtaining a new set of coordinates whose time derivatives are zero and

the new coordinates are constants that can be understood as the initial conditions of the original

set of equations. Thus, the transformation equations are, in fact, the solution of the system in

terms of the initial values of position and momentum. By substituting (2.4a) into (2.4c) with

 ≡ 0, we obtain a partial differential equation for the transformation


(
)S2

)q
,q, t

)
+
)S2

)t
= 0, (2.5)

where S2, solution of Eq. (2.5), is called Hamilton’s principal function. When the Hamiltonian

does not depend explicitly on time, i.e., when the system is autonomous, setting the new Hamilto-

nian as a constant is enough,  ≡ E, and the transformation (2.4c) becomes the Hamilton-Jacobi
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equation


(
)S2

)q
,q

)
= E, (2.6)

where S2, in this case, is called Hamilton’s characteristic function. Unless Eqs. (2.5) and (2.6)

are separable, i.e., unless it is possible to write

S =

N∑

i=1

Si(p, qi),

 =

N∑

i=1

i(p, qi),

Eqs. (2.5) and (2.6) usually are extremely difficult to solve. Nevertheless, this formalism is use-

ful in obtaining approximate series solutions for quasi-separable systems, or, as is more usually

called, quasi-integrable systems, as we will see later on in this chapter.

2.2 INTEGRABLE SYSTEMS

For the special case when the Hamiltonian function does not depend explicitly on time,  =

(p,q) is a constant of motion, and the total energy of the system E = (p,q) is conserved.

Therefore, orbits with energyE are restricted to lie on a (2N−1)-dimensional energy surface. If

an autonomous Hamiltonian system withN degrees of freedom hasN independent constants of

motion fi(p,q), i = 1, 2,… , N , and if these N constants mutually commute, i.e., if [fi, fj] = 0

for all i, j, we say the system is integrable. If the last condition holds, we say theN constants are

in involution, and the constants of motion fi are independent if none of them can be expressed

as a function of the N − 1 other constants. The requirement that an integrable system has N

constants of motion implies that the trajectory of the system in the 2N-dimensional phase space

is restricted to lie on a N-dimensional surface, and the requirement that the N constants are

in involution restricts the topology of the surface to be a N-dimensional torus. Figure 2.2 is a

representation of a two-dimensional torus.

Let us consider then an autonomous, integrable Hamiltonian system withN degrees of free-

dom. We can introduce a canonical change of variables such that the new Hamiltonian depends

only on the new momentum vector, P, i.e.,  = (P), such that )/
)Qi = 0 ∀ i. This can be

done by choosing the components of the new momentum vector P as theN constants of motion,

Pi = fi(p,q). Since fi are constants,

dPi

dt
=

dfi

dt
=
)
)Qi

= 0,

and hence  = (P). As a matter of fact, we can consider any independent set of functions

of the N constants of motion as the components of the new momentum vector. One particular

choice is especially convenient and it makes the task of finding the trajectory of a system in the
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Hamiltonian formalism much easier. The action-angle variables are canonically conjugated and

denoted by (P,Q) ≡ (I, ���), where the action I is defined by

Ii =
1

2� ∮
Ci

p⋅⋅⋅ dq , i = 1, 2,… , N,

and Ci are the paths on the N-dimensional torus (Figure 2.2). The canonically conjugated vari-

able to the action, ���, is angle-like because on one circuit following one of the paths Ci around

the torus, the variable �i increases by 2�, while the other variables �j return to their original

values. This canonical transformation is defined in terms of a generating function,

S(I,q) = ∫
q

q(0)
p(I,q′)⋅⋅⋅ dq′ ,

in the following way

�i =
)S(I,q)

)Ii
,

pi =
)S(I,q)

)qi
.

The torus is defined by the initial conditions, i.e., by the constants of motion, fi, and the new

Hamiltonian does not depend on ��� by construction. Then the equations of motion are

dIi

dt
= −

)(I)

)�i
= 0,

d�i

dt
=
)(I)

)Ii
= !i(I),

with solutions

Ii = const, (2.7a)

�i(t) = �i(0) + !i(I)t. (2.7b)

Figure 2.2: Schematic representation of a two-dimensional torus.

C1

C2

Source: the author.
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This solution is represented byN-dimensional tori, with the constant actions being its radius and

the angle variables being cyclic. Thus, !i(I) = )(I)
/
)Ii can be thought as the components

of the nonlinear angular velocity vector and through this vector we can analyze the dynamics of

the trajectories on the torus, which can be periodic or quasi-periodic. A trajectory on a torus is

periodic if there is a vector of integer numbers m = (m1, m2,… , mN ) such that

m⋅⋅⋅!!! = 0, (2.8)

except when m ≡ 0. This condition is known as the resonant condition and, in this case, the

orbit closes on itself after m1 circuits in �1, m2 circuits in �2, ..., mN circuits in �N .

Consider the case N = 2. The resonant condition (2.8) can be written in the following way

!1

!2

= −
m2

m1

.

Since the coefficients mi are integers, the ratio between the components of the angular velocity

is a rational number, and due to that the set of tori that satisfy the resonant condition (2.8) are

called rational tori. On the other hand, if the resonant condition is not satisfied, the trajectories

are quasi-periodic, the ratio !1∕!2 is an irrational number and the tori are called irrational tori.

For autonomous, integrable Hamiltonian systems with 2 degrees of freedom, the dynamics

in the 4-dimensional phase space is restricted to a 2-dimensional torus, as shown in Figure 2.2.

We can then associate two frequencies to each trajectory, which are the frequencies along each

path Ci on the torus, defined by the vector !!!. We define the rotation number (also known as

winding number) of a trajectory as the ratio between these two frequencies as

� =
!1

!2

,

which represents the average number of rotations performed along the two directions, C1 and

C2, i.e., another way of defining whether the dynamics of a trajectory on the torus is periodic

or quasi-periodic is by computing its rotation number. If we can write the rotation number as

the ratio between two integer numbers, � = r∕s, the trajectory is periodic on a rational torus.

Otherwise, the trajectory is quasi-periodic on an irrational torus.

2.3 QUASI-INTEGRABLE SYSTEMS

We have previously seen that if we find a canonical transformation that transforms all actions

into constants, Eq. (2.7) is the solution of the transformed system and the inverse transforma-

tion is the solution in the original coordinates. However, such transformation only exists for

integrable systems, i.e., a system with N degrees of freedom that has N constants of motion in

involution, and integrable systems with more than one degree of freedom are very rare. We can

then ask what the solution of a system that does not differ much from an integrable one looks
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like. In other words, how robust is the integrability when the Hamiltonian is slightly perturbed?

Intuitively, one might expect that any perturbation would destroy all constants of motion of the

system, except for the energy E = (p,q). However, for a small perturbation, not all constants

of motion are destroyed, and some of the N-dimensional tori survive the perturbation. The an-

swer to these questions came with the very rigorous mathematical work of Kolmogorov (1954),

Arnold (1963) and Moser (1962), and the result is what we call today the KAM theorem (13–15).

A typical approach to study this problem is to consider a perturbed Hamiltonian that is the

sum of an integrable term, 0, and a perturbative term, �1,

(p,q) = 0(p,q) + �1(p,q). (2.9)

We wish to obtain a canonical transformation such that the new Hamiltonian is a function only

of the actions. We express the Hamiltonian (2.9) in terms of the action-angle variables of the

unperturbed Hamiltonian,

(I, ���) = 0(I) + �1(I, ���). (2.10)

with

Ii = const,

�i(t) = �i(0) + !i(I)t,

!i =
)0

)Ii
.

We seek a transformation (I, ���) → (I, ���) of the form

Ii =
)S(I, ���)

)�i
,

�i =
)S(I, ���)

)I i

.

such that  = (I). The Hamilton-Jacobi equation (2.6) for S, using (2.10), becomes

(
)S

)���
, ���

)
= (I),

0

(
)S

)���

)
+ �1

(
)S

)���
, ���

)
= (I). (2.11)

One possible approach for solving (2.11) is expanding S in the form of a power series in �,

S = S0 + �S1 + �
2S2 +⋯ , (2.12)

where we choose the 0th order term to generate the indentity transformation (I, ���) → (I, ���), i.e.,
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S0 = I⋅⋅⋅���. Substituting (2.12) in (2.11), we have

0

(
I, �

)S1

)���
, �2

)S2

)���
+⋯

)
+ �1

(
I, �

)S1

)���
, �2

)S2

)���
+⋯ , ���

)
= (I). (2.13)

Expanding (2.13) in power series of � ≪ 1 and only retaining first order terms, we have

0(I) + �

[
)0

)I
⋅⋅⋅
)S1

)���
+1(I, ���)

]
= (I). (2.14)

Next, we expand S1(I, ���) and 1(I, ���) in a Fourier series in terms of the angle ���,

S1 =
∑

m

S1,m(I) exp (im⋅⋅⋅���), (2.15a)

1 =
∑

m

1,m(I) exp (im⋅⋅⋅���), (2.15b)

where m = (m1, m2,… , mN ) is a vector of integers. Substituting the expressions (2.15) in (2.14),

we obtain in first order,

S1 = i
∑

m

1,m(I)

m⋅⋅⋅!!!0(I)
exp(im⋅⋅⋅���), (2.16)

where !!!0(I) ≡ )0

/
)I is the N-dimensional nonlinear frequency vector for the corresponding

action I. At this point arises the question of whether the infinite sum (2.16) converges. This

is the so-called “problem of small denominators” since the product m⋅⋅⋅!!!0 depends on I and for

some values of I, m⋅⋅⋅!!!0 approaches the resonant condition (2.8). These I define the resonant

tori of the unperturbed system, i.e., the rational tori, for which the denominator goes to zero and

the sum (2.16) diverges. These resonant tori typically are destroyed for any perturbation � > 0.

However, there is a large set of “very nonresonant” tori that survive the perturbation, which is

the set of irrational tori, and the condition of whether they are destroyed or not is given by the

famous KAM theorem.

2.4 THE KAM THEOREM

The KAM theorem has its origin in a conjecture made by Kolmogorov (13), which was

proved by Arnold (15) assuming analytical 0 and 1, and by Moser (14) assuming these func-

tions have a finite number of derivatives. In this thesis, we will not exhibit the proof of this

theorem, which can be found in Refs. (9, 13–15), and we will only discuss the conditions for its

validity and its consequences.

As we have previously mentioned, the KAM theorem states that the nonresonant tori of an

integrable system subjected to a small perturbation are only deformed, and not destroyed by it.

The conditions on whether the tori are destroyed or not are the following:
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1. the frequencies must be linearly independent, i.e.,

m⋅⋅⋅!!!(I) ≠ 0,

where !!! = )0

/
)I e m is a vector of integers;

2. the perturbation must be smooth (there is a sufficient number of continuous derivatives of

1);

3. the initial conditions must be far enough from resonance to satisfy

|m⋅⋅⋅!!!| ≥ K�(!!!)|m|−(N+1) (2.17)

for all m, except m ≡ 0, where |m| = ||m1
||+ ||m2

||+⋯+ ||mN || andK�(!!!) > 0 is a constant

that does not depend on m and goes to zero in the limit � → 0.

The set of tori that fulfills all three conditions are called KAM tori. And since (2.17) cannot be

satisfied for K� too large, and since K� increases with �, there exists a condition of sufficiently

small perturbation for the existence of the KAM tori.

For systems with two degrees of freedom, we can rewrite the inequality (2.17) as

||||
� −

r

s

||||
>
K�(!!!)

s5∕2
, (2.18)

where r and s are integer numbers. This means that the tori whose rotation number cannot be

well approximated by a rational number are not destroyed by a small perturbation. These tori

are “very irrational” and the last KAM torus to be destroyed is the one whose rotation number

is the “most irrational”. We can measure how irrational a number is by computing its continued

fraction expansion. Let 0 < 
 < 1 be an irrational number. We can express it as follows


 =
1

a1 +
1

a2 +
1

a3 +⋯

≡ [a1, a2, a3,…], (2.19)

where the coefficients ai are natural numbers. This expansion is unique and the truncation of

this expansion after some finite number of terms gives a rational approximation of 
 . Thus, the

most irrational number is the one whose convergence rate of (2.19) is the slowest, i.e., the one

with the smallest ai. Therefore, the most irrational number there is has ai = 1 for all i. Such a

number is known as the golden mean and is given by

g =

√
5 − 1

2
≈ 0.618 = [1, 1, 1,…].
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A little less irrational than the golden mean are the so-called noble numbers. Their continuated

fraction expansion have the form gk = [k, 1, 1, 1,…], with k > 1.

In addition to the condition of sufficiently small perturbation, the system must be non-

degenerate for the KAM theorem to be valid, and this imposes that the integrable part of the

perturbed Hamiltonian (2.10) must satisfy the non-degeneracy condition, given by

det
|||||

)20

)Ij)Ik

|||||
= det

|||||

)!j

)Ik

|||||
≠ 0 (2.20)

for all (p,q). This means, essentially, that the unperturbed system must be nonlinear. For ex-

ample, let !1 = )0

/
)I1 be a constant, i.e., correspond to linear oscillations. In this way the

condition (2.20) is violated and the KAM theorem cannot be applied. In other words, this con-

dition implies that the rotation number, �, must change monotonically through the surfaces of

0.

Therefore, we have learned from the KAM theory that the nonresonant tori with rotation

number sufficiently irrational keep their topology and are just slightly deformed in the presence

of a small perturbation. However, on the resonant tori and in their neighborhood, the KAM the-

orem cannot be applied. The tori in this region are the ones that do not survive the perturbation

and their fate is described by the Poincaré-Birkhoff theorem.

2.5 POINCARÉ SECTION

Before we state the Poincaré-Birkhoff theorem, let us introduce the Poincaré surface of sec-

tion, or simply the Poincaré section. The Poincaré section is an extremely useful tool for the

visualization of trajectories of dynamical systems. Systems with more than one degree of free-

Figure 2.3: Time evolution of a trajectory in phase space and its successive intersection with the
Poincaré section Ω.

Ω
xn

xn +1

xn +2

Source: adapted from Figure 1.3(a) of Ref. (80).
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dom are difficult to deal with due to their high dimensionality and the Poincaré section is a way

of representing a trajectory in the N-dimensional phase space in a (N − 1)-dimensional space.

It consists of a surface Ω in phase space transverse to the flow of trajectories, as shown in Fig-

ure 2.3. We define the Poincaré map by the successive intersections of a trajectory with the

surface Ω in a particular way (e.g. from left to right). During the time evolution of the trajec-

tory, there will be an arbitrary number of intersections, and we relate the nth intersection with

the next through the Poincaré map:

(pn+1,qn+1) = ℙ(pn,qn).

In general, a particularly convenient choice for Ω can be made. For example, consider an au-

tonomous Hamiltonian system with two degrees of freedom. The dynamics is restricted to lie

on a three-dimensional surface (p1, p2, q1, q2) = 0 in the four-dimensional phase space. This

equation allows us to write any of the four variables, e.g., p2, as a function of the other three

p2 = p2(p1, q1, q2,0). (2.21)

In case of a bounded motion, the trajectory crosses the plane q2 = const in the three-dimensional

volume repeatedly. The plane p1-q1 is, then, a convenient choice for the Poincaré section. An-

other example is the case of a Hamiltonian system with one degree of freedom with a periodic

time dependency, (p, q, t) = (p, q, t + �). In this case, we can construct the Poincaré sec-

tion using the intersections of the trajectory with the (p(tn),q(tn)) plane for each multiple of the

period �, tn = t0 + n�.

In the Poincaré section, the resonant tori with rotation number � = r∕s are denoted by s

points, and the nonresonant tori are denoted by closed invariant curves, since the dynamics is

quasi-periodic and the points never return exactly to their original position, thus filling all the

curve.

2.6 THE POINCARÉ-BIRKHOFF THEOREM

We have seen that most tori survive small perturbations. The resonant tori, however, do

not survive. To simplify the discussion, we consider a resonant torus with rotation number

� = r∕s. Each point of the torus is a fixed point of the s-fold iterated unperturbed Poincaré

map. If we assume that � increases outward, then outside (inside) the rational torus there are

tori with rotation number greater (smaller) than �, which for s iterations of the mapping the

points move counterclockwise (clockwise), as indicated schematically in Figure 2.4(a). Thus,

between these two tori, there must exist a torus whose angular coordinate is constant under the

s-fold iterated perturbed Poincaré map. These points only move radially under the action of

the s-fold iterated map, and the full curve in Figure 2.4(b) is mapped into the dashed curve.

Due to area preservation, the image of the full curve must enclose the same area as the original
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Figure 2.4: The neighborhood of a resonant torus. (a) Illustration of an integrable system, where
the middle curve represents the rational torus with rotation number � = r∕s (s = 2 in this
illustration). The inner and outer curves represent the irrational tori. (b) Illustration of the
perturbed system. The intersections between the dashed and full lines are the fixed points of the
s-fold iterated Poincaré map. The inner and outer curves represent the irrational tori that survive
the perturbation.

Source: adapted from Figure 3.3 of Ref. (80).

curve. This can only be possible if both curves intersect each other in an even number of points.

Each one of the intersections returns to its original position under the action of the s-fold iterated

perturbed Poincaré map. Thus, these intersection points are the fixed points of the Poincaré map.

Therefore, for an even number of intersections, there must exist 2ks (k = 1, 2,…) fixed points,

which are the so-called Poincaré-Birkhoff fixed points. Although generally k = 1, the theorem

makes no claim about the value of k. Therefore, a resonant torus is not completely destroyed in

the presence of a small perturbation. Its remnants form a chain of elliptic and hyperbolic fixed

points alternately following each other.

The dynamics in the neighborhood of a fixed point differs fundamentally whether the fixed

point is elliptic or hyperbolic. An elliptic point is a stable equilibrium point and the orbits in

phase space circle about it. On the other hand, a hyperbolic point is an unstable equilibrium

point. This point is characterized by two directions, one stable and one unstable. In this case,

unless the orbit is initialized exactly over the stable direction, all orbits tend to move further away

from the hyperbolic points’ neighborhood. It is the hyperbolic points’ instability the source of

chaotic motion. These two behavior are exemplified in Figure 2.5.

Chaos arises in the neighborhood of the remnants of the destroyed resonant tori in thin bands.

Smaller KAM tori are formed around the elliptic points created after the resonant tori destruc-

tion. In these regions, the motion is basically quasi-periodic, and the elements of the chains are

called elliptic or regular islands. However, this is not valid for the entire phase space, since the

previous discussion also applies here: the resonant tori are destroyed and around them, a new

chain of elliptic and hyperbolic points is created again, but now in a smaller scale. If we magnify

any of these small KAM tori, we see that the structure repeats itself for arbitrarily smaller scales.

It is interesting to analyze the consequences of the KAM and Poincaré-Birkhoff theorems for

two-dimensional Hamiltonian systems, i.e., systems where the dynamics is restricted to lie on a
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Figure 2.5: Neighborhood of an elliptic point (on the left) and a hyperbolic point (on the right).
The orbits that circle about the elliptic point in elliptical trajectories are called elliptical orbits.
The thinner lines in the figure on the right represent hyperbolic orbits that move away from
the hyperbolic point in all directions. The thicker lines are the asymptotes (stable and unstable
directions) of the hyperbolic point.

q q

p p

Source: the author.

two-dimensional surface (Poicaré section). The trajectories that circle the elliptic points in these

systems form islands in phase space2 and a KAM torus divides the phase space into two distinct

regions. These KAM tori act as barriers to chaotic motion since they are invariant curves that

cannot be crossed by trajectories in phase space, thus separating chaotic and regular regions.

According to the KAM theorem, for small perturbations only the resonant tori are destroyed

and most tori persist. Therefore, although present, the chaotic region volume is small. How-

ever, as the perturbation increases, more and more KAM tori disappear and originally separated

chaotic bands merge in a great chaotic sea. The proportion of the area of the regular islands em-

bedded in the chaotic sea gradually decreases and chaos grows stronger. It is worth mentioning

that the KAM theorem is only valid for small perturbations, but for not-too-strong perturbations,

several regular islands are still present in the chaotic sea. Since chaotic and regular domains oc-

cupy a finite area larger than zero, the phase space structures constitute a fat fractal (21).

The fate of KAM tori after their destruction differs fundamentally from the fate of resonant

tori. When a KAM torus is destroyed by the perturbation, it gives rise to a Cantor set3, called

“cantori” (19, 20). Unlike the KAM tori which are full barriers to the transport in phase space,

the cantori act as partial barriers, where trajectories may be trapped in a certain region bounded

by them for a finite period of time, but eventually they will escape. The cantori are like a KAM

torus, but with small holes through which the trajectory can pass through, as exemplified in

Figure 2.6.

There is a hierarchical structure of regular islands, KAM tori and cantori that repeats itself

for arbitrarily smaller scales. These regions bounded by cantori form the so-called dynamical

traps (26). The chaotic orbits that approach an island may spend an arbitrarily long, but finite,

time in this neighborhood, in which the orbits behave similarly as quasi-periodic orbits until

2 From now on, unless stated otherwise, understand as phase space the appropriate Poincaré section.
3 The Cantor set is a set of points on line segments with the property that its dimension is a fractional value of

approximately 0.63 (18).
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Figure 2.6: Schematic representation of the phase space of a two-dimensional Hamiltonian sys-
tem, where the chaotic sea is depicted in gray and the regular island in white. Within this island,
there exist KAM tori, and surrounding the island are the remnants of a destroyed KAM torus,
known as the cantorus.

KAM

Chaotic sea

Holes in the

cantorus

tori

Source: the author.

eventually they escape. This produces long intervals of intermittency with quasi-regular motion

in the chaotic orbit, known as stickiness (22–33). Before the orbit escapes to the chaotic sea, it

becomes trapped in regions bounded by cantori, and once inside this region, the orbit may cross

an inner cantorus and so on to arbitrary small levels in this hierarchical structure of islands-

around-islands.
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3 THE STANDARD MAP – A BRIEF SURVEY

In this chapter we make a brief review of the paradigmatic standard map, introduced by

Chirikov (59), and we illustrate all the features of Hamiltonian systems discussed in Chapter 2.

We also introduce the Lyapunov exponents, which are the most successful mathematical tool

to quantify chaos in dynamical systems, and we present the algorithm introduced by Eckmann

and Ruelle (85) for the evaluation of the Lyapunov exponents for mappings. We also follow

Zaslavsky derivation (27, 47, 82, 86–88) of the Fokker-Plank-Kolmogorov (FPK) equation, to

obtain the kinetic description of chaotic dynamics, which results in the normal transport, and

briefly comment on his modifications to the FPK equation to describe anomalous transport.

Finally, we compute the diffusion exponent for different values of the nonlinearity parameter of

the standard map.

3.1 THE KICKED ROTOR – THE STANDARD MAP

Let us now illustrate all these features of Hamiltonian systems discussed so far using the

kicked rotor as an example. Consider a rod with length l and moment of inertia I , which is

attached to a frictionless pivot at one end. The other end of the rod experiences periodic pulses

with intensity k∕l (k > 0) applied at time instants t = 0, �, 2�,…. There is no gravitational

force, and the motion of the rod is confined to a plane. The generalized coordinates, in this case,

are the angular position of the rod, �, and the angular momentum, p. The Hamiltonian for this

system is given by

(p, �, t) =
p2

2I
−
k

l
cos �

∑

n

�(t − n�),

where �(⋅) is the Dirac delta function. From (2.1), the equations of motion are

dp

dt
= −

k

l
sin �

∑

n

�(t − n�), (3.1a)

d�

dt
=
p

I
. (3.1b)

Between two kicks, there is no force acting on the rod, i.e.,

p = const, (3.2a)

� =
p

I
t + const. (3.2b)

For the Poincaré section, we consider the positions of � and p immediately after each pulse. The

solution before the nth pulse, p(t(−)
n
), �(t(−)

n
), with t(±)

n
= n� ± 0+, where 0+ denotes a positive

infinitesimal, can be connected to the solution immediately after the nth pulse, p(t(+)
n
), �(t(+)

n
),
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Figure 3.1: The phase space of the standard map for 100 randomly chosen initial conditions
iterated for N = 1.5 × 104 times with (a) k = 0.0, (b) k = 0.9, (c) k = 1.5, (d) k = 3.63, (e)
k = 5.3, and (f) k = 9.0.

Source: the author.

using (3.1) and (3.2)

p(t(+)
n
) − p(t(−)

n
) = −

k

l
sin �n,

�(t(+)
n
) − �(t(−)

n
) =

pn+1�

I
.

We can set �∕I = 1 and l = 1 without loss of generality, and we obtain, therefore, the mapping

�n+1 = �n + pn+1 mod 2�, (3.3a)

pn+1 = pn − k sin �n mod 2�, (3.3b)

where mod 2� in the first equation indicates that � is an angular variable on the interval [0, 2�),

and k is the nonlinearity parameter. By taking p mod 2� the dynamics takes place on a torus

[−�, �] × [−�, �] and by omitting it, the dynamics takes place on a cylinder [−�, �] × (−∞,∞).

This map is called the “standard map” (or Chirikov-Taylor map) (59), and in spite of its simple

mathematical form, it exhibits all the features of a typical quasi-integrable Hamiltonian system,

and it has become a paradigmatic model for the study of Hamiltonian chaos.

For k = 0, the dynamics is regular, the system is integrable, pn are all constants, and all orbits

lie on invariant rotational tori [Figure 3.1(a)]. As the nonlinearity parameter k increases, the

sufficiently irrational invariant rotational tori persists as invariant curves, as stated by the KAM

theorem [Figure 3.1(b)], whereas the resonant tori are destroyed, and it is possible to observe
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chaotic behavior for appropriate initial conditions. For the critical value of k = kc ≈ 0.971635

(89) the last invariant rotational torus ceases to exist, leading to a scenario of global stochasticity,

and one single chaotic orbit fills a large portion of the phase space. For k not too large, several

regular islands are still present in the chaotic sea [Figures 3.1(c)-3.1(e)] and as k increases even

further, their size gradually decreases, until eventually, for sufficiently large values of k, almost

no islands can be found embedded in the chaotic sea [Figure 3.1(f)].

We can find the period-1 fixed points of the map by requiring that

�n+1 = �n,

pn+1 = pn.

From (3.3), we have

pn − k sin �n = 0,

k sin �n = 0.

The second equation demands that �n = m�, where m = 0, 1, 2,…. The first one implies that

pn = 0. Therefore, there are two period-1 fixed points in the interval � ∈ [0, 2�): (�, p) = (0, 0)

and (�, 0). To analyze their stability, we need the stability matrix, also known as the Jacobian

matrix. Given a mapping xn+1 = f (xn) = f n(x0), the Jacobian matrix is given by

Jij =
)fi

)xj
. (3.4)

For the standard map (3.3), we have

J =

( )�n+1

)�n

)�n+1

)pn
)pn+1

)�n

)pn+1

)pn

)
=

(
1 − k cos �n 1

−k cos �n 1

)
. (3.5)

The determinant of the Jacobian matrix, |J |, is related to the change in the phase space volume,

where |J | < 1 indicates contraction and |J | > 1 indicates expansion. Thus, for area-preserving

maps, |J | = 1must hold for all points in phase space. Indeed, by taking the determinant of (3.5),

we see that

|J | = 1 − k cos �n + k cos �n = 1.

For area-preserving maps, the stability of the fixed point can be estimated using their residue

(89, 90), given by

Ri =
1

4

[
2 − Tr(J n

i
)
]
, (3.6)

where Tr is the trace and J n
i

is the n time iterated Jacobian matrix of the ith period-n fixed point.

An orbit is elliptic for 0 < Ri < 1, parabolic for Ri = 0, 1 and hyperbolic otherwise. Therefore,
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the residue for the first period-1 fixed point (�, p) = (0, 0) is R1 = k∕4 and the orbit is elliptic if

0 <
k

4
< 1,

such that k ∈ [0, 4]. For the second fixed point, R2 = −k∕4, thus the orbit is hyperbolic for all

values of k > 0.

3.2 LYAPUNOV EXPONENTS

As we have previously seen, the phase space of a typical quasi-integrable Hamiltonian system

is neither fully integrable nor uniformly hyperbolic, but there is a coexistence of regular and

chaotic domains. Furthermore, for two-dimensional Hamiltonian systems, these are distinct and

disconnected domains. Therefore, it is of major importance the development of mathematical

tools to characterize orbits into these two categories. One of the most important feature of

chaotic motion is the so-called sensitivity to the initial conditions, i.e., two initial conditions

originally extremely close to each other tend to rapidly diverge, making the orbit unpredictable.

The Lyapunov exponents (51–53) have proven to be one of the most useful dynamical diagnostic

for chaotic motion, and they are the average exponential rate of divergence or convergence of

nearby orbits in phase space.

Consider now a set of initial conditions on an N-dimensional hypersphere of radius "(t0) ≡
"0 centered at the point x0 at time t0 in phase space. With the temporal evolution of the initial

conditions, at a later time t1, for example, this hypersphere will transform into an ellipsoidal

hypersurface with axes measuring "i(t1), where i = 1, 2,… , N . In Figure 3.2, this process is

schematically depicted for the two-dimensional case (N = 2). We define the Lyapunov expo-

nents as a measure of the growth or decay of the principal axes "i(t). Mathematically, they are

defined by the limit

�∞
i
= lim

t→∞
lim
�0→0

1

t
ln
"i(t)

"0
. (3.7)

Therefore, anN-dimensional system hasN characteristic Lyapunov exponents, and we say that

the system is chaotic if at least one of them is positive. Moreover, the sum of all Lyapunov

exponents is the negative of the phase space contraction rate (83). Therefore, for Hamiltonian

systems, this sum must equal to zero. Hence, for systems with a two-dimensional phase space

(N = 2), there are two exponents and they satisfy �1 = −�2. In this case, all periodic and

quasiperiodic orbits have zero Lyapunov exponents, while chaotic orbits exhibit �1 > 0. Alter-

natively to the definition (3.7), it is possible to define the Lyapunov exponents in terms of the n

iterate of the Jacobian matrix, Df n, of a mapping xn+1 = f (xn) = f n(x0), as (85)

�∞
i
= lim

n→∞

1

n
ln
(‖‖Df nui‖‖

)
, (3.8)
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Figure 3.2: Temporal evolution of a two-dimensional sphere of initial conditions around the
point x0, where �i(t) denotes the length of its ith axis at time t.
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Source: the author.

where ui is the eigenvector corresponding to the ith eigenvalue of Df n and we can write Df n as

Df n = J (f n−1(x0))J (f
n−2(x0))⋯ J (f (x0))J (x0) =

n∏

k=1

J (fk−1(x0)), (3.9)

where J is the Jacobian matrix (3.4). There is also a similar definition to (3.8) for the continuous-

time case, and it can be found in Ref. (85).

Both definitions of the Lyapunov exponents, (3.7) and (3.8), correspond to the infinite-time

Lyapunov exponents. The infinite-time exponents capture the asymptotic behavior of orbits and

they have the same value for almost every point in phase space. They are more commonly used

in theoretical analysis rather than practical calculations, as it is impossible to numerically reach

the infinite-time limit. Therefore, in practice, we truncate the computation of the Lyapunov

exponents at some instant in time. We call this quantity the finite-time Lyapunov exponents

(FTLE), �i ≡ �i(x0, n), which, in general, depends on the chosen initial condition, contrary to

its infinite-time counterpart.

In Refs. (51, 52) are described an efficient algorithm for the calculation of the spectrum of

Lyapunov exponents when the equations of motion are explicitly known, and in Ref. (53) the

same algorithm is described for an experimental time series. However, it is possible to exploit

some matrix properties to increase the efficiency of the Lyapunov exponents computation. That

is what Eckmann and Ruelle described in Ref. (85) and we will outline it shortly.

First, let the Jacobian matrix be the product of an orthogonal matrixO and an upper triangular

matrix T ,

J = OT .
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We can write the upper triangular matrix as

T = O−1J .

Now, let us denote by Jn, On, and Tn the Jacobian, orthogonal, and upper triangular matrices at

the instant n, respectively. Then, we can introduce the operator O0O
−1
0

in (3.9), such that

Df n = Jn−1Jn−2⋯ J1O0O
−1
0
J0,

where we identify O−1
0
J0 as T0 and we can rewrite J1O0 as j1. Thus, we have

Df n = Jn−1Jn−2⋯ j1T0.

Aplying now the operator O1O
−1
1

, we obtain

Df n = Jn−1Jn−2⋯ J2O1O
−1
1
j1T0,

= Jn−1Jn−2⋯ j2T1T0.

Therefore, by continuously applying the operator OkO
−1
k

in Df n, and defining

Tk+1 = O−1
k+1
jk+1 = O−1

k+1
Jk+1Ok, (3.10)

we conclude that the nth iterate of the Jacobian matrix can be expressed in terms of the product

of n upper triangular matrices,

Df n = Tn−1Tn−2 ⋯ T1T0 =

n∏

k=1

Tk−1 =  , (3.11)

which is an upper triangular matrix itself, whose eigenvalues are its diagonal elements. Con-

sequently, the Lyapunov exponents can be expressed in terms of the diagonal elements of 
as

�∞
i
= lim

n→∞

1

n
ln ||ii||. (3.12)

We are interested in two-dimensional area-preserving mappings, such as the standard map.

We use then the two-dimensional rotation matrix as the orthogonal matrix O to find the eigen-

values of  ,

O =

(
cos � sin �

− sin � cos �

)
. (3.13)

Its inverse equals its transpose since O is an orthogonal matrix,

O−1 =

(
cos � − sin �

sin � cos �

)
. (3.14)
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Rewriting (3.10) in its matrix form,

(
T k+1
11

T k+1
12

0 T k+1
22

)
=

(
cos �k+1 − sin �k+1

sin �k+1 cos �k+1

)(
J k+1
11

J k+1
12

J k+1
21

J k+1
22

)(
cos �k sin �k

− sin �k cos �k

)
,

=

(
J k+1
11

cos �k+1 − J
k+1
21

sin �k+1 J k+1
12

cos �k+1 − J
k+1
22

sin �k+1

J k+1
11

sin �k+1 + J
k+1
21

cos �k+1 J k+1
12

sin �k+1 + J
k+1
22

cos �k+1

)
Ok.

Therefore

T k+1
11

= cos �k
(
J k+1
11

cos �k+1 − J
k+1
21

sin �k+1
)
− sin �k

(
J k+1
12

cos �k+1 − J
k+1
22

sin �k+1
)
, (3.15)

T k+1
12

= sin �k
(
J k+1
11

cos �k+1 − J
k+1
21

sin �k+1
)
+ cos �k

(
J k+1
12

cos �k+1 − J
k+1
22

sin �k+1
)
, (3.16)

0 = cos �k
(
J k+1
11

sin �k+1 + J
k+1
21

cos �k+1
)
− sin �k

(
J k+1
12

sin �k+1 + J
k+1
22

cos �k+1
)
, (3.17)

T k+1
22

= sin �k
(
J k+1
11

sin �k+1 + J
k+1
21

cos �k+1
)
+ cos �k

(
J k+1
12

sin �k+1 + J
k+1
22

cos �k+1
)
. (3.18)

From (3.17) we obtain an expression for the angle � in terms of its previous value,

tan �k+1 =
−J k+1

21
cos �k + J

k+1
22

sin �k

J k+1
11

cos �k − J
k+1
12

sin �k
, (3.19)

and numerically, we compute the finite-time Lyapunov exponents as

�i =
1

n

n∑

k=1

ln ||T kii ||, (3.20)

where we have omitted the dependency in x0 and n.

In Figure 3.3 is depicted the Lyapunov exponents time series for the standard map (3.3)

with k = 1.5 for an initial condition lying on the chaotic sea. We observe a positive largest

Lyapunov exponent (blue curve), indicating chaotic dynamics. Moreover, �1 + �2 = 0 for the

entire time series (black curve), which corroborates the area-preservation feature of the map.

We also observe that the convergence rate of the Lyapunov exponents to their asymptotic values

is rather slow.

To develop a better understanding of the behavior of �1 as a function of time, we select four

distinct chaotic initial conditions for k = 0.9 and k = 1.5 [Figure 3.4]. For k = 0.9 there

are still several rotational invariant tori in phase space, which restrain the transport in the p-

direction, resulting in distinct and disconnected chaotic domains. Each of these domains has its

own characteristic Lyapunov exponents, which are related to the area of the chaotic component

for fixed k (91)1. The black region in Figure 3.4(a) has the largest area and, consequently, the

largest Lyapunov exponent. For k = 1.5 [Figure 3.4(b)], there is only one chaotic domain

1 In Ref. (91) the authors make a complete analysis of the characteristic times of the standard map, and also present
empirical relations between the largest Lyapunov exponent with the area of the chaotic component, as well as
with the nonlinearity parameter k.
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Figure 3.3: The Lyapunov exponents time series of the standard map (3.3) with k = 1.5 and
initial condition (�0, p0) = (3.0, 0.0). In blue is the largest Lyapunov exponent, �1, and in red
the smallest Lyapunov exponent, �2. As has been stated in the text, due preservation of phase
space volume, the sum of all Lyapunov exponents must be zero, which is verified by the black
curve, �1 + �2.

Source: the author.

Figure 3.4: The phase space and the largest Lyapunov exponent time series of the standard map
with (a) k = 0.9 and initial conditions (black) (�0, p0) = (3.0, 0.0), (red) (�0, p0) = (�,−�∕2 −

0.12), (blue) (�0, p0) = (�,−2.55), and (green) (�0, p0) = (�, �∕2 + 0.11), and with (b) k = 1.5

and initial conditions (black) (�0, p0) = (3.0, 0.0), (red) (�0, p0) = (2.87, 0.0), (blue) (�0, p0) =
(−�,−2.0), and (green) (�0, p0) = (3�∕2,−�).

Source: the author.

that fills a significant portion of phase space. The largest Lyapunov exponent of all selected

initial conditions converges to the same asymptotic value, however, in this case, the trapping of

chaotic orbits around the hierarchical structure of islands-around-islands previously discussed

in Chapter 2 is more prominent, and is reflected by the several drops in the value of �1 as the
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Figure 3.5: (a) The FTLE “time series” and (b) the FTLE probability distribution of the standard
map with k = 1.5 and initial conditions (black) (�0, p0) = (3.0, 0.0), (red) (�0, p0) = (2.87, 0.0),
(blue) (�0, p0) = (−�,−2.0), and (green) (�0, p0) = (3�∕2,−�).

Source: the author.

dynamics evolves [Figure 3.4(b2)]. These trappings that cause the sudden drops in the value of

�1 make the Lyapunov exponent not the optimal choice to detect chaotic orbits, since it takes

longer to reach its asymptotic value, increasing the computational effort needed.

Therefore, this irregular behavior of �1 as the orbit wanders through the chaotic sea makes

it useful to compute the FTLE in windows of size m, along the evolution of a single orbit of

length n, {�(j)
1
(m)}j=1,2,…,n∕m, and define its probability distribution function, P (�1(m)). Szezech

et al. (54) demonstrated that for parameter values for which the standard map exhibits sticky

regions, e.g. k = 1.5, the FTLE distribution is bimodal [Figure 3.5(b)]. The FTLE “time series”

[Figure 3.5(a)] exhibits abrupt changes in the value of �1(m), indicating different transitions from

different regimes in the dynamics of the orbit. These transitions cause the FTLE distribution to

split into two modes, where the mode corresponding to higher values of �1(m) indicates the

windows when the orbit was in the bulk of the chaotic sea. Whereas, when the orbit is trapped,

the value of �1(m) decreases, and this corresponds to the secondary mode near zero.

All regular orbits have zero Lyapunov exponents for infinite times, however, due to the finite-

time nature of the numerically computed Lyapunov exponents, they converge to zero only when

n → ∞. Furthermore, the convergence rate depends on the chosen initial condition (92). The

decays curves are shown in Figure 3.6(b) for the orbits shown in Figure 3.6(a). For the regular

orbits, we observe a power-law decay, �1 ∼ n−�. The red curve corresponds to the chaotic orbit,

and naturally �1 > 0. The blue curve corresponds to the fixed point (�, p) = (0.0, 0.0) and we

observe a much faster convergence towards zero for this orbit than for the rest of them. And

even though the magnitude of �1 for the irrational orbits are slightly different, the Lyapunov

exponents of all irrational orbits converge to zero with the same rate. For the periodic orbit,

the decay exponent is � = 1, while for the quasi-periodic ones is � = 0.910 ± 0.009. It is

important to stress that this is not a numerical artifact due to the numerical method. Manchein

and Beims (92) reported the same behavior using the algorithm described in (51, 52), while we

used Eckmann and Ruelle’s algorithm (85) previously described. Also, for this periodic orbit,

we can analytically determine the largest Lyapunov exponent from the eigenvalues of the time-n



45

Figure 3.6: (a) The phase space and (b) the largest Lyapunov exponent time series of the stan-
dard map for k = 1.5 and T = 2 × 106 with initial condition (red) (�0, p0) = (3.0, 0.0),
(blue) (�0, p0) = (0.0, 0.0), (green) (�0, p0) = (0.25, 0.0), (purple) (�0, p0) = (0.5, 0.0), (yel-
low) (�0, p0) = (0.75, 0.0), and (cyan) (�0, p0) = (1.25, 0.0). The convergence rate of �1 towards
zero is different for different initial conditions, where the fastest convergence rate is for the fixed
point itself (red curve).

Source: adapted from Figure 1 of Ref. (92).

Figure 3.7: The largest Lyapunov exponent for a 1000 × 1000 grid of uniformly chosen values
of (a) (k, �0) with p0 = 0, and (b) (k, p0) with �0 = 0 and T = 1.0 × 104.

Source: the author.
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iterated Jacobian matrix,

Df n =

(
1 − k 1

−k 1

)n

,

and we observe that both analytical and numerical �1 (black and blue curve of Figure 3.6, re-

spectively) exhibit the same rate of decay (92).

This difference in the convergence rate allows us to locate where the periodic orbits are in

phase space, and also study the bifurcations as the nonlinearity parameter k is varied. Fig-

ure 3.7 shows the conservative generalized bifurcation diagram (CGBD) (92) for the standard

map, which can be constructed by calculating �1 in the parameter space. In this case, it can

be �0 × k with p0 = 0.0 [Figure 3.7(a)] or p0 × k with �0 = 0.0 [Figure 3.7(b)]. The gray

points correspond to chaotic orbits while the purple to red points around the main black lines

correspond to irrational regular orbits whose largest Lyapunov exponent has not yet converged to

zero, and they also define the size of the islands. Through this diagram, we can observe complex

transitions from regular to chaotic dynamics as k changes. We also observe that the structure

repeats itself for smaller scales (insets of Figure 3.7), characteristic of fractal boundaries.

3.3 DIFFUSION

3.3.1 The Fokker-Plank-Kolmogorov Equation

When studying Hamiltonian chaos, we can examine chaotic orbits using two different time

scales of description: short tc and large �. On a short scale, we focus on the occurrence of chaos

and the local properties of the system that contribute to the mixing of fast variables (phases).

The Lyapunov exponents are commonly used to describe the local properties of chaos in this

context. On a large scale, our attention shifts to the properties of orbit distributions and the

system’s kinetics. In simpler terms, we are interested in understanding the transport of particles

within the system. To derive a kinetic description of chaotic dynamics is to reduce the number

of variables by averaging over fast variables:

P (p, t) = ⟨⟨P (p, q, t)⟩⟩,

where P (p, q, t) is the probability density of having the particle at generalized momentum and

coordinate p and q, respectively, at time t. The generalized coordinate q is considered as the

fast variable and ⟨⟨⋅⟩⟩ denotes averaging over q. Therefore, we are interested in the derivation

of a kinetic equation for P (p, t) to describe chaotic dynamics. Such an equation is called the

Fokker-Plank-Kolmogorov (FPK) equation and it was first used to investigate chaotic motion by

Zaslavsky and Chirikov in 1972 (86).

The FPK equation was first obtained by Fokker and Plank, and later by Kolmogorov using

a special scheme and conditions that are important for understanding some basic principles of

kinetic (93). In the following, we will outline such derivation based on Refs. (27, 82, 88). Let
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x be a characteristic variable of the wandering process, for example, a particle coordinate, and

W (x, t; x′, t′) be a probability density of having a particle at position x at time t if the particle

was at position x′ at time t′ ≤ t. An equation of the Markov-type process can be written for

W (x, t; x′, t′):

W (x3, t3; x1, t1) = ∫ W (x3, t3; x2, t2)W (x2, t2; x1, t1) dx2 , (3.21)

which means that the transition from (x1, t1) to (x3, t3) can go through all possible states (x2, t2).

A typical assumption for W is its time uniformity, i.e.,

W (x, t; x′, t′) = W (x, x′; t − t′). (3.22)

For small Δt = t − t′, we have, in first order,

W (x, x0; t + Δt) = W (x, x0; t) +
)W (x, x0; t)

)t
Δt. (3.23)

Equation (3.23) provides the existence of the limit

lim
Δt→0

W (x, x0; t + Δt) −W (x, x0; t)

Δt
=
)W (x, x0; t)

)t
, (3.24)

which imposes some specific physical constraints that we will discuss in Section 3.3.2. Equation

(3.21) consists of only one function W with different arguments, and the central point of this

derivation is the distinction between functionsW which correspond to different time scales. Let

us introduce a new notation:

P (x, t) ≡ W (x, x0; t), (3.25)

where P will be used for t which safisfies the condition

t ≪ tc , (3.26)

and tc is a characteristic time that defines a short-scales time of the process. This explains the

notation (3.25) since, in this case, W (x, x0; t) ≡ P (x, t) does not depend on the initial condition

x0, contrary to W (x, x0; t + Δt) which defines the transition during a very short time interval.

Thus, with these considerations and Eqs. (3.21) and (3.22), we can rewrite (3.24) as

)P (x, t)

)t
= lim

Δt→0

1

Δt

[

∫ W (x, y; Δt)P (y, t) dy − P (x, t)

]
. (3.27)

For Δt = 0 it should be no transition if the velocity is finite, i.e.,

lim
Δt→0

W (x, y; Δt) = �(x − y). (3.28)
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For Δt ≪ 1, (3.28) provides the following expansion (47)

W (x, y; Δt) = �(x − y) + A(y; Δt)�′(x − y) +
1

2
B(y; Δt)�′′(x − y), (3.29)

where we kept the terms up to second order, the prime denotes the derivative with respect to the

argument and A and B can be expressed as moments of W (x, y; Δt) as

A(y; Δt) = ∫ (y − x)W (x, y; Δt) dx ≡ ⟨⟨Δy⟩⟩, (3.30)

B(y; Δt) = ∫ (y − x)2W (x, y; Δt) dx ≡ ⟨⟨(Δy)2⟩⟩. (3.31)

Similarly, coefficients of higher order in the expansion ofW (x, y; Δt) can be expressed as higher

moments of W .

The transition probability W (x, y; Δt) satisfies two normalization conditions

∫ W (x, y; Δt) dx = 1, (3.32)

and

∫ W (x, y; Δt) dy = 1. (3.33)

By integrating (3.29) with respect to y and using (3.33), we obtain

A(y; Δt) =
1

2

)B(y; Δt)

)y
, (3.34)

or, applying the notations introduced in Eqs. (3.30) and (3.31),

⟨⟨Δy⟩⟩ = 1

2

)

)y
⟨⟨(Δy)2⟩⟩. (3.35)

The final step of the derivation is to consider the Kolmogorov conditions (93): assuming the

existence of the limits
lim
Δt→0

1

Δt
⟨⟨Δx⟩⟩ ≡ (x),

lim
Δt→0

1

Δt
⟨⟨(Δx)2⟩⟩ ≡ (x),

lim
Δt→0

1

Δt
⟨⟨(Δx)m⟩⟩ = 0, for m > 2,

(3.36)

we obtain the Fokker-Plank-Kolmogorov (FPK) equation from (3.27)

)P (x, t)

)t
= −

)

)x
[(x)P (x, t)] +

1

2

)2

)x2
[(x)P (x, t)], (3.37)
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which can be rewritten as a diffusion equation

)P

)t
=

1

2

)

)x

()P
)x

)
(3.38)

after applying (3.34), with a diffusion coefficient

 =  = lim
Δt→0

⟨⟨(Δx)2⟩⟩
Δt

. (3.39)

By identifying

J =
1

2
D
)P

)x

as the particle flux, (3.38) can be written in a divergent form that corresponds to the conservation

of the number of particles:
)P

)t
=
)J

)x
.

Furthermore, Eqs. (3.35), (3.36) and (3.39) provide an additional condition

(x) =
1

2

)
)x
,

which shows that (x) can be understood as the convective part of the particle flux, which is

zero if  = const.

3.3.2 Normal Transport

Several authors have devoted time and effort to the solutions of the FPK equation (3.37) for

different initial and boundary conditions (e.g. (94)). Here we will consider the most simple case,

which we will refer to as normal transport. Considering  = const, x ∈ (−∞,∞), P (x, t =

0) = �(x), then we obtain a distribution known as Gaussian distribution

P (x, t) =
1√
2�Dt

exp

(
−
x2

2Dt

)
. (3.40)

All its odd moments are zero, and its second moment is

⟨
x2
⟩
= t, (3.41)

and higher moments are ⟨
x2m

⟩
= mt

m.

As we have mentioned, Kolmogorov conditions (3.36) impose some physical constraints

which limit the application of the FPK equation to real phenomena. For instance, consider the

limit �t → 0 and an infinitesimal displacement �x along a particle trajectory that corresponds

to this limit. Then the particle velocity v is given by �x∕�t→ v, and conditions (3.36) and with
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notation (3.39) gives
(�x)2

�t
= v2�t =  = const.

This equation means that v should be infinite in the limit �t → 0, which makes no physical

sense. When we look at the solution (3.40), the same issue arises. The solution satisfies the

initial condition P (x, t = 0) = �(x), i.e., a particle is at the origin at t = 0. For any finite time t,

(3.40) gives a non-zero probability of the particle to be at any arbitrary point x, since exp
(
−x2

)

goes to zero only when x → ∞, which means the same as before: it is necessary an infinite

velocity to propagate from x = 0 to x → ∞ in a small time interval t. A physical approach to

prevent this conflict to arise when using the FPK equation is to abandon the limit Δt → 0 in

(3.36) and to consider minΔt, which satisfies the limit

t

minΔt
→ ∞.

To demonstrate how the FPK equation can be applied to real physical problems, consider the

standard map (3.3). In this case, minΔt = 1 and for k ≫ 1 we can consider the angular variable

� to be random with an almost uniform distribution in the interval [0, 2�) (59). Then

⟨⟨sin �⟩⟩ = 0,

⟨⟨sin2 �⟩⟩ = 1

2
,

Δpn ≡ pn+1 − pn,

⟨⟨Δpn⟩⟩ = 0,

⟨⟨(Δpn)2⟩⟩ =
k2

2
,

where ⟨⟨⋅⟩⟩ denotes average over �. The corresponding FPK equation is

)P (p, t)

)t
=

1

2
(k)

)2P (p, t)

)p2
, (3.42)

with

(k) =
k2

2
. (3.43)

A more sophisticated analysis of (3.42) gives an oscillatory behavior for (k) (95)

(k) =

{
1

2
k2
{[
1 − 2J2(k)

][
1 − J2(k)

]}
, for k ≥ 4.5,

0.15(k − kcr)
3, for kc < k ≤ 4.5,

(3.44)

where kc ≈ 0.9716 is the critial value when the last rotational invariant torus ceases to exist (89)

and J2 is the Bessel function of the first kind of order 2.

Numerically, we estimate the diffusion coefficient for the standard map as [cf. Eq. (3.41)]
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(48, 49, 88, 91, 96, 97)

(k) =

⟨
(p − p0)

2
⟩

n
, (3.45)

where n is the number of iterations of the mapping and ⟨⋅⟩ denotes the average over a large

ensemble of initial conditions. In general, we need a large number of iterations to ensure the

convergence of the diffusion exponent, however, we do not observe a significant difference for

different numbers of iterations (Figure 3.8). Also, we observe only small deviations of the nu-

merically calculated diffusion coefficient (green, blue, and red lines) from its theoretical value

(black dashed line). However, (3.44) fails for several intervals of k (inset of Figure 3.8). In

these cases, the diffusion is anomalous and the diffusion coefficient goes to infinity when the

number of iterations goes to infinity (48). That is the reason why the peaks of the red curve

(n = 1.0 × 104) are higher than the peaks of the green and blue curves (n = 1.0 × 103 and

n = 5.0 × 103, respectively).

The anomalous diffusion has been related to the existence of accelerator modes (59), which

corresponds to orbits that surround periodic orbits that are stable for values of k in the intervals

2�|l| ≤ k ≤ √
(2�l)2 + 16, (3.46)

Figure 3.8: The diffusion coefficient, Eq. (3.45), for the standard map as a function of the
nonlinearity parameter, with Δk = 0.025 for (green) n = 1.0 × 103, (blue) n = 5.0 × 103,
and (red) n = 1.0 × 104. In black dashed line is the theoretical value for the standard map
as predicted in (3.44). We considered 100 × 100 initial conditions uniformly distributed in a
grid on the entire phase space [0, 2�] × [0, 2�]. Inset: magnification on the interval k ∈ [6, 8]

that shows the groups II and III of accelerator mode islands. We observe a deviation of the
numerically calculated diffusion coefficient from its theoretical value.

Group II

Group III

Source: adapted from Figure 1 of Ref. (49).
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where l > 0 is an integer. Contopoulos et al. (98) named this kind of island group II islands

(inset of Figure 3.8) and the moment of each orbit is increased by approximately 2� after each

iteration. These islands appear in a recurrent way for values of k near k = 2l�, in intervals given

by (3.46). There are also islands forming a third group, named group III, that appear for values

of k ≈ (2|l| + 1)�. The third group corresponds to periodic orbits of higher periods, and their

role in the transport becomes less important with increasing k (49).

3.3.3 Anomalous Transport

To obtain an approximation to the anomalous transport in chaotic Hamiltonian systems, Za-

slavsky (27, 47, 82, 87, 88) made a few modifications to the derivation of the FPK equation to

include fractal time and fractional derivatives. He followed a similar scheme as introduced by

Kolmogorov (93) and this lead him to a phenomenological, fractional kinetic equation, called

the fractional Fokker-Plank-Kolmogorov equation (FFPK) or simply fractional kinetic equation

(FKE). We will not outline this derivation, which can be found in Refs. (27, 47, 82, 87, 88).

The main result is the generalization of the diffusion process, with the second moment of the

distribution given by ⟨
x2
⟩
∼ t�, (3.47)

Figure 3.9: The variance of the momentum,
⟨
(p − p0)

2
⟩

, as a function of the number of iterations
n for (red) k = 6.0, (blue) k = 6.25, (green) k = 6.5, (cyan) k = 6.625, (brown) k = 6.75, and
(yellow) k = 7.0. The black dashed (dotted) line indicates the slope of � = 1 (� = 2). We
considered 30 × 30 initial conditions uniformly distributed in a grid on the entire phase space
[0, 2�] × [0, 2�].

Source: the author.
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where � ∈ [0, 2] is the diffusion exponent (or transport exponent). When there are no accelerator

mode islands present in phase space, we have normal diffusion and � = 1 (48, 49, 88, 97, 99).

The case � > 1 is called superdiffusion and the case � < 1 subdiffusion. The case � = 2 is

associated strictly with the presence of accelerator modes, and we have ballistic transport.

For the standard map (3.3), the generalization of (3.42) is defined by [cf. Eq. (3.47)]

⟨
(p − p0)

2
⟩
= D�(k)n

�, (3.48)

where D�(k) is the generalized classical diffusion constant, and the convergence of � can be

found for n → ∞. Numerically, we obtain � from the slope of the average of the variance of

the momentum,
⟨
(p − p0)

2
⟩

, as a function of the number of iterations in logarithmic scale (Fig-

ure 3.9). For the values of k where the diffusion coefficient (3.39) goes to infinity (Figure 3.8),

there are accelerator mode islands of period 1 and the slope of the variance of the momentum as

a function of n is � = 2 (green, cyan, and brown curves in Figure 3.9), whereas when there are

no accelerator modes islands, we obtain the normal diffusion, with � = 1 (red, blue and yellow

curves in Figure 3.9).
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4 EFFECTIVE FRACTAL DIMENSION AND STICKINESS

We begin this chapter by introducing a new method based on a weighted Birkhoff average to

distinguish chaotic and regular orbits in two-dimensional maps. We present this methodology

for the standard map (3.3) for different values of the nonlinearity parameter and define a cutoff

value above which the orbits are said to be regular, and chaotic otherwise. Next, we outline

the uncertainty fraction method, used to compute the box-counting dimension of a boundary,

and together with the weighted Birkhoff average method, we obtain the fractal dimension of the

boundary for different values of the nonlinearity parameter k of the standard map and different

levels in the hierarchical structure of islands-around-islands.

4.1 WEIGHTED BIRKHOFF AVERAGE

In Chapter 3 we have introduced the Lyapunov exponents as a mathematical tool for the

detection of chaotic motion in phase space. Although widely used, the Lyapunov exponents

exhibit a very slow convergence, as we have seen in Figures 3.4 and 3.6. When sticky domains

are present in phase space, the convergence is even worse due to the successive trappings of

chaotic orbits. Furthermore, the computation of the Lyapunov exponents is expensive because

it is necessary to integrate both equations of motion and the linearized dynamics when using

Benettin’s method (52). When using Eckmann and Ruelle’s method (85), however, it is not

necessary to integrate the linearized dynamics, but it still requires the knowledge of the Jacobian

matrix of the model, which is not always available. To avoid all these issues, a new method based

on a weighted Birkhoff average has been proposed (62–67) and has been proved an excellent

alternative to the Lyapunov exponents.

The Birkhoff average of a function ℎ ∶ M → ℝ on the phase space M along the trajectory

of a map f ∶M →M begining at a point z0 ∈M is given by the sum

BN (ℎ; z0) =
1

N

N−1∑

n=0

ℎ(f n(z0)). (4.1)

The Birkhoff ergodic theorem (16) states that if the trajectory is ergodic, then the time average

of a function ℎ along the trajectory, BN (ℎ; z0), converges to its space average

⟨ℎ⟩ = ∫
M

ℎ d�

forN → ∞, where � is an invariant measure over the trajectory. The Birkhoff average, however,

does not have a fast convergence to the space average. For a chaotic orbit the convergence

rate of (4.1) is N−1∕2, and N−1 for the quasiperiodic case. The slow convergence of (4.1) for

quasiperiodic orbits is due to the lack of smoothness at the ends of the orbit. It is possible
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to improve this convergence by considering small weights to the terms when n is near 0 and

N instead of weighting the terms ℎ(f n(z0)) in the average equally. Thus, we add a weighting

function g, normalized as such
N−1∑

n=0

g

(
n

N

)
= 1, (4.2)

that vanishes at the beginning and end of the orbit and we introduce the weighted Birkhoff

average as

WBN (ℎ; z0) =

N−1∑

n=0

g

(
n

N

)
ℎ(f n(z0)). (4.3)

If a smooth map f has a quasiperiodic orbit
{
f n(z0)

}
with Diophantine rotation vector, ℎ and

g are C∞ and g ∈ m, where m is the space of bump functions whose first m derivatives vanish

on the boundary, then WBT (ℎ; z0) [Eq. (4.3)] converges to ⟨ℎ⟩ (100). By choosing the smooth

bump function

g(u) =

{
C exp

[
−

1

u(1−u)

]
, u ∈ (0, 1),

0, otherwise,
(4.4)

which is ∞ and C is the normalization constant to satisfy (4.2), WBN (ℎ; z0) converges to the

space average faster than any power ofN (see Theorems 1.1 and 3.1 in Ref. (64)). The weighted

Birkhoff average, however, does not improve the convergence rate of chaotic orbits.

Therefore, it is possible to distinguish between regular and chaotic dynamics in maps1 by

examining the convergence rate of WBN (ℎ; z0) to ⟨ℎ⟩ as N → ∞ (62,63,65,66) by comparing

the value of WBN (ℎ; z0) along the first N iterates with WBN (ℎ; f
N (z0)) along the second N

iterates. In the limit N → ∞ these values should be equal and we measure the convergence rate

by computing the number of zeros after the decimal point by defining

dig = − log10
||WBN (ℎ; z0) −WBN (ℎ; fN (z0))||. (4.5)

If dig is large, the convergence is fast and the orbit is regular. If dig is small, the orbit is

chaotic. However, a smaller value of dig (e.g. dig = 1) does not imply that this orbit is “more

chaotic” than an orbit with a larger value of dig (e.g. dig = 3). It seems that there is a correlation

with the area of the chaotic component, but the relation is not as clear as it is with the Lyapunov

exponents (91). Also, note that the total number of iterates necessary to compute (4.5) is 2N .

In Figure 4.1 is shown the value of dig for a grid of 1000 × 1000 initial conditions uniformly

distributed in the depicted regions in the phase space of the standard map (3.3) for six distinct

values of k. The total iteration time is 2N = 2.0 × 106 and ℎ(�, p) = cos �. The regular

islands are represented by a red color, while the chaotic regions by purple/blue. We observe a

clear distinction between them by looking at the histograms of the values of dig of Figure 4.1

(Figure 4.2). There are mainly two peaks in the distribution. The one centered around dig ∼ 2.5

1 Recently, this methodology has been extended to the case of flows (67).
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Figure 4.1: The number of zeros after the decimal point of the convergence of the weighted
Birkhoff average, dig [Eq. (4.5)], for a grid of 1000 × 1000 uniformly distributed initial condi-
tions in the phase space region depicted of the standard map (3.3), with (a) k = 0.9, (b) k = 1.5,
(c) k = 3.93, (d) k = 4.0, (e) k = 5.3, and (f) k = 6.908745. The total iteration time is
2N = 2.0 × 106, and ℎ(�, p) = cos �. The regular regions are characterized by high values of
dig (red), while the chaotic ones by small values of dig (blue).

Source: the author.

corresponds to the chaotic orbits while the regular ones are centered around dig ∼ 14. Although

they occur less often, there are also orbits with intermediate values of dig. These are trapped

orbits whose value of dig has not yet converged to its asymptotic value. The specific choice of

the function ℎ is arbitrary at some level, given that it satisfies the requirements of Theorems

1.1 and 3.1 of Ref. (64). Here, we use ℎ(�, p) = cos �, the same function used in Ref. (65) to

compare the weighted Birkhoff average method with the Lyapunov exponents and the 0-1 test.

However, other functions have also been used. In Ref. (62) the authors used ℎ(�, p) = sin(� + p)

to demonstrate the method for the standard map, and in Ref. (66), Meiss and Sander used the

frequency map of a three-dimensional analog of the standard map as the function ℎ.

By the definition of the Lyapunov exponents, we say an orbit is chaotic if at least one ex-

ponent is greater than zero. However, in numerical simulations, we define a small cutoff value

to distinguish between regular and chaotic orbits. When using the weighted Birkhoff average

method we also need to define such a value. Meiss and Sander (66) also addressed this problem.

Based on our analysis of the histograms of dig (Figure 4.2), we choose digc = 11.25 as the cutoff

value above which the orbits are regular. We choose a large value in order to be conservative in

classifying orbits as regular, since trapped orbits show intermediate values of dig but are, in fact,

chaotic. Furthermore, because the number of orbits with intermediate values is small compared

to regular and chaotic ones, no significant changes occur for small changes in the cutoff value.
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Figure 4.2: Histograms of the values of dig shown in Figure 4.1. There are mainly two peaks,
each one characterizing one dynamical regime. The peak for small values of dig corresponds to
chaotic orbits, while the peak for larger values of dig to regular orbits. There are orbits with an
intermediate value of dig, and they are trapped orbits whose value of dig has yet not converged
its asymptotic value. We note that as k increases, the proportion of regular orbits diminishes, as
expected.

Source: the author.

Figure 4.3: The normalized proportion of regular orbits as a function of the cutoff value digc
for the data in Figures 4.1 and 4.2. For small and large values of dig, the proportion changes
significantly, however, there is an interval around digc ∈ [5, 12] in which the proportion is almost
constant.

Source: the author.

In fact, there is a whole interval of the cutoff value in which the distinction remains accurate

(Figure 4.3).
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4.2 FRACTAL DIMENSION AND UNCERTAINTY EXPONENT

Therefore, the method just described is an efficient method for distinguishing chaos and reg-

ularity, however, the exact boundary between these two regimes is extremely hard to determine.

Due to the presence of the islands, the chaotic sea constitutes a fat fractal (21), and it is widely

known that fractal structures are present in a variety of dynamical systems, ranging from dissipa-

tive (101–104) to Hamiltonian systems (105–108). There are many definitions of the dimension

d of a boundary. The most commonly used is called the capacity or box-counting dimension

and is defined as

d = lim
�→0

lnN(�)

ln 1∕�
, (4.6)

where N(�) is the minimum number of D-dimensional boxes of length � required to cover the

boundary. For smooth boundaries, d equals the phase space dimension, D, and we say a bound-

ary is fractal if d < D.

Typically, a nonlinear system exhibits multiple final states (e.g. multiple attractors in dis-

sipative systems or the coexistence of chaos and regularity in Hamiltonian systems). In such

cases, the final state might depend on the initial state of the system. For example, in Figure 4.4

is exemplified the case of two different final states, denoted by A and B. Initial conditions on

the left (right) of the boundary will asymptotically go to the final state A (B). However, if the

initial conditions are known with an uncertainty of ", it is not possible to say to which final state

the initial state belongs. In Figure 4.4, points 1 and 2 represent initial conditions known with an

uncertainty ". We can say for sure that the orbit generated by initial condition 1 belongs to the

final state B. However, the orbit generated by initial condition 2 may belong to either A or B. In

this sense, we say that initial condition 2 is uncertain.

Now, let us consider the fraction of all uncertain initial conditions within the phase space

region shown in Figure 4.4. We denote this fraction f ("), and we clearly have f (") ∼ ", i.e., a

Figure 4.4: A region in phase space with two different final states, A and B, divided by the
boundary. A and B can represent either two different attractors or the boundary of an island.
Points 1 and 2 are initial conditions with uncertainty ".

A B

.

ε
.1

2

Source: adapted from Figure 1 of Ref. (101).
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reduction in the uncertainty of the initial condition corresponds to a proportional reduction in

the uncertainty of the final state measured by f ("). This is the case of smooth boundaries. This,

however, is not the case for several nonlinear systems (109). When the boundaries are fractal,

the uncertainty fraction is expected to scale with " as a power law (101–103),

f (") ∼ "�, (4.7)

and we say that there is final state sensibility. In such a case, a great reduction in the uncertainty

of the initial condition uncertainty yields only a small decrease in the uncertainty of the final

state. In other words, in order to reduce the uncertainty of the final state, it may be necessary

a considerable reduction in the initial condition uncertainty ". In (4.7) � ≤ 1 is the uncertainty

exponent, and it is possible to relate it to the box-counting dimension (4.6). The definition (4.6)

simply points out that

N(�) ∼ �−d . (4.8)

By setting � ≡ ", the volume of the uncertain region on the phase space is given by N(")"D,

where "D is the volume of boxes. Thus, from (4.8), the uncertain phase space volume is estimated

to be N(")"D ∼ "D−d . Therefore, the uncertainty exponent is (102)

� = D − d. (4.9)

In our case, the phase space dimension is D = 2, such that a smooth boundary is characterized

by � = 1, since d = 1 in this case, whereas a fractal boundary is characterized by � ∈ (0, 1).

To numerically estimate the uncertainty exponent, we consider a large number of randomly

chosen initial conditions (�0, p0). For each initial condition, we estimate the final state of the

system, which in our case means the evaluation of dig [Eq. (4.5)] with total iteration time 2N =

2 × 106 and ℎ(�, p) = cos �. We check whether dig is larger or not than the cutoff value. If so, we

say the initial condition is regular, i.e., is inside of an island. If not so, the orbit lies in the chaotic

sea. We then perturb each initial condition in the � direction by ±" to produce two new initial

conditions (�0 ± ", p0), and evaluate dig for these two new initial conditions. If either of the two

perturbed initial conditions has a different result, we say the original initial condition is uncertain.

The uncertainty fraction, f ("), is the ratio between the number of uncertain initial conditions and

the total number of them. We repeat this computation ten times with 5.0× 104 initial conditions

for each value of ", which we change from 10−2 to 10−8. We compute the uncertainty exponent

for each one of the ten computations and take its mean and standard deviation: � = � ± ��. The

uncertainty exponent can be estimated from the slope in the log f (")-log " plot (Figure 4.5). For

k = 4.0 we obtain an exponent of � = 0.371 ± 0.009, and a dimension of d = 1.629 ± 0.009.

Now, suppose we wish to decrease by half the uncertainty of the measurement, i.e., suppose
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Figure 4.5: The uncertainty fraction as a function of " for the phase space region depicted in
Figure 4.1(d) with k = 4.0. We observe a power law dependence with exponent � = 0.371 ±

0.009. We chose 5.0 × 104 random initial conditions for each value of ", and we performed this
simulation ten times. We computed the uncertainty exponent for each one of the ten simulations
and took its mean and standard deviation: � = � ± ��.

Source: the author.

f ′("′) = f (")∕2. Then

("′)� =
1

2
"�,

� log "′ = log
1

2
+ � log ",

log "′ = log
(
1

2

)1∕�

+ log ",

"′ = 2−1∕�".

In words, in order to decrease by half the uncertainty of the measurement, it would be necessary

to improve the quality of the measurement, i.e., the uncertainty in the initial condition, by a

factor of 21∕�. In the case of the standard map with k = 4.0 (Figures 4.1(d) and 4.5), this factor

would be of 21∕0.371 ≈ 6.5. Therefore, fractal boundaries impose an obstruction to predictability

in the sense that in order to obtain the desired uncertainty in a measurement, it is necessary a

considerable reduction in the “error” of the measurement.

4.3 EFFECTIVE FRACTAL DIMENSION

The origin of the fractality of phase space in two-dimension Hamiltonian systems lies in the

coexistence of chaotic and regular domains. As we have mentioned in Chapter 2, the phase space

of a typical Hamiltonian system exhibits a complex structure of islands-around-islands embed-

ded in the chaotic sea. This structure repeats itself for arbitrarily small scales. For particular
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Figure 4.6: The phase space of the standard map with k = 6.908745 for 100 randomly chosen
initial conditions distributed (a) in the entire phase space [−�, �] × [−�, �] and (b)-(f) in the
regions delimited by the first five rows of Table 4.1. Figures (b)-(f) are magnifications around
the islands marked by a red box.

Source: the author.

values of the nonlinearity parameter k, the structure of islands-around-islands in the standard

map assumes a self-similar character (46,47, 88,99, 99,110). This structure is related to the ac-

celerator modes and it is the origin of anomalous transport (46) together with local topological

properties of the phase space near the islands. By introducing a renormalization group trans-

form (47, 87) it is possible to define scaling constants of the island chain. Benkadda et al. (99)

and Zaslavsky et al. (88) obtained such scaling constants for the area and period of the islands

in the chain for the standard map with k = 6.476939 and k = 6.908745, respectively. They

computed the area and period of each island in the chain, and showed that there is a rule that

relates these quantities of the nth generation island and the next:

Sn+1 = �SSn,

Tn+1 = �TTn.
(4.10)

In order to determine the self-similar structure, we choose k = 6.908745 and consider 100

randomly chosen initial conditions in the entire phase space [−�, �] × [−�, �] [Figure 4.6(a)].

For this value of k there are two sets of islands, and each of these sets are composed of a main

island surrounded by three other islands [Figure 4.6(b)]. By constinuously magnifying the re-
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Figure 4.7: The escape time for a grid of 1000 × 1000 uniformly distributed initial conditions
in the regions given in Table 4.1 for the standard map with k = 6.908745. Figures (b)-(e) are
magnifications around the indicated islands and the color bar is in logarithmic scale.

Source: the author.

gions denoted by the red box in Figure 4.6 and defined by the first five rows of Table 4.1, and

considering 100 randomly chosen initial conditions in each one of these regions, we can observe

the self-similar strucutre reported by Zaslavsky et al. (88). The sequence of islands generated

by k = 6.908745 is 1–3–8–8–8, which means that the central island (1) is surrounded by three

other islands (3) and each one of these islands is surrounded by eight islands (8) and so on. We

label this sequence as (g, q), where g represents the order of generation and q is the number

of islands of the gth generation. In Figure 4.6(d), for example, we have (g, q) = (2, 8). These

structures are also revealed by counting the time required (escape time) for an orbit to escape

the region depicted in Figure 4.6(b) (first row of Table 4.1). We consider 1000 × 1000 uni-

formly distributed initial conditions in a grid for each of the regions specified in Table 4.1 and

count their escape time (Figure 4.7). The regular orbits remain for all times inside the region

(gray color) and the not-trapped chaotic orbits leave the region after a few iterations (black to

blue color). The intermediate values of Tesc correspond to trapped orbits and the magnifications

in Figures 4.7(b)-(e) show the stickiness structures and the self-similar hierarchy of the island

chain. Note that the smaller the scale, the longer it takes for the orbits to escape.

We now compute the uncertainty exponent for the island chain shown in Figure 4.7. We pro-

ceed in the same way as for k = 4.0. We consider 5.0 × 104 randomly chosen initial conditions

Table 4.1: The first five rows corresponds to the phase space regions shown in Figures 4.6(b)-(f)
and 4.7 given by

{
�, p | �0 ≥ � ≥ �1, p0 ≥ p ≥ p1

}
. The last row corresponds to the phase space

region around the central island in 4.6(b) and 4.7(a).

�0 �1 p0 p1

0.83 1.47 −0.6 0.6

1.22 1.43 −0.05 0.05

1.2650 1.2794 −0.019 −0.009

1.2705 1.2725 −0.011 03 −0.010 46

1.272 22 1.272 34 −0.010 89 −0.010 79

1.0314 1.218 61 −0.1908 0.1908

Source: the author.
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Figure 4.8: The uncertainty fraction as a function of " for (a)-(e) the phase space regions shown
in Figure 4.7 and given by Table 4.1 and (f) for the region around the central island in Fig-
ure 4.7(a) given by the last row of Table 4.1. We observe a power law dependence, however, now
it is possible to associate different exponents with different intervals of ". We choose 5.0 × 104

random initial conditions for each value of ", and we perform these simulations twenty-five times
for (a) and (b) and ten times for (c)-(f). We compute the uncertainty exponent for each one of
these simulations and take its mean and standard deviation: � = � ± ��.

Source: the author.

for each value of ", which we vary from 10−2 to 10−8 for the first three regions [(a)-(c)] and from

10−3 to 10−8 for the remaining two [(d) and (e)]. For each uncertain initial condition, we also

count the escape time, Tesc. We repeat these computations twenty-five times for (a) and (b) and

then times for (c)-(e), and we estimate the uncertainty exponent for each one of these computa-

tions and take its mean and standard deviation: � = � ± �� (Table 4.2). The logarithmic plots

of f (") are shown in Figure 4.8. The power law dependence is again evident, however, unlike

the previous case (Figure 4.5), we can now associate different exponents with different intervals

of " [except for Figure 4.8(e)], and we evaluate the mean escape time, ⟨Tesc⟩, for each one of

these intervals (Table 4.2).

We observe a very similar behavior of f (") for regions (a)-(d). There are two decay rates

in these cases, given by the exponents �1 and �2, where �1 > �2. Figure 4.8(e) shows that for

values of " in the range of 10−3 ⪆ " ⪆ 10−5, the function f (") does not follow a power law. This

behavior can be attributed to the fact that, in this scenario, the size of the island is comparable to

the scale of ". Consequently, numerous false positive uncertain initial conditions arise, leading to

a deviation from the expected power law. This observation holds true for all deviations from the

power law decay when " takes large values, as exemplified in Figure 4.8(c) for 10−2 ⪆ " ⪆ 10−3.

The presence of distinct exponents, and therefore different dimensions (Table 4.2), for different

intervals of " indicates the existence of an effective fractal dimension (111,112) that depends on
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Table 4.2: The uncertainty exponent �, the dimension d, and the mean escape time ⟨Tesc⟩ of the
phase space regions shown in Figure 4.7 and given by Table 4.1.

Fig. 4.7 �1 d1
⟨
T (1)
esc

⟩
�2 d2

⟨
T (2)
esc

⟩

(a) 0.74 ± 0.01 1.26 2.8 × 104 0.29 ± 0.06 1.71 1.2 × 106

(b) 0.611 ± 0.005 1.398 1.5 × 105 0.31 ± 0.03 1.69 1.6 × 106

(c) 0.561 ± 0.008 1.439 5.3 × 105 0.29 ± 0.02 1.71 1.6 × 106

(d) 0.448 ± 0.004 1.552 1.9 × 106 0.307 ± 0.004 1.693 2.7 × 106

(e) 0.284 ± 0.002 1.716 7.3 × 106 — — —

Source: the author.

the scale of the initial condition uncertainty. In other words, at scale "∗
1
, the system exhibits a

fractal dimension of d("∗
1
) = d1, while at scale "∗

2
, the system behaves as if the fractal dimension

is d("∗
2
) = d2, and so on. Thus, at various scales "∗

i
, the island boundary demonstrates an

effective fractal dimension of d("∗
i
) = di, which differs from the asymptotic value reached as "

approaches zero. In the specified range of ", the observed dimension remains small for large "

values, until it abruptly becomes larger for small " values.

The uncertainty of the initial conditions, ", can be related to the resolution of a measuring

device. And as fractal boundaries introduce unpredictability in the system, we can argue that

in order to enhance our ability to predict whether an initial condition is regular or chaotic, we

may need to amplify the experimental accuracy by a larger factor that depends on the scale of

resolution. Let us consider the island depicted in Figure 4.7(b) as an example. If the apparatus

has an accuracy of 10−4 and we aim to improve the predictive capability regarding the regu-

larity or chaos of the initial condition by a factor of 2, the accuracy needs to be increased by

21∕0.611 ≈ 3.1. On the other hand, if the apparatus has a resolution of 10−7, the required improve-

ment in accuracy would be 21∕0.31 ≈ 9.4. Therefore, at realistic length scales, the uncertainty

of the measurement is not determined by the asymptotic fractal dimension, but rather by the

effective fractal dimension (112). Beyond the dependence on the scale, the effective fractal di-

mension also depends on the position in phase space. By performing the same procedure for

the calculation of the uncertainty fraction for the region around the central island (last row of

Table 4.1), which is surrounded by the period-3 islands, of Figure 4.7(a), we obtain an exponent

of � = 0.987 ± 0.009 for 10−2 ≤ " ≤ 10−5 [Figure 4.8(f)]. This results in a dimension of

d = 1.013 ± 0.009, which is clearly different from the dimension of the period-3 islands. A

similar result was found for the dimension of the stable and unstable manifolds (111–113). The

dimension for the central island corresponds to a smooth boundary (within numerical errors),

and it corroborates the previous statement that the fractality is due to the hierarchy of islands-

around-islands. In the chosen region, there is no such hierarchy. Furthermore, for " < 10−5

we observe a zero uncertainty exponent, which corresponds to a riddle boundary (114), i.e., for

scales smaller than approximately 10−5, a reduction in the initial condition uncertainty does not
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reduce the uncertainty in the final state.

Moreover, the order of generation of the island chain also influences the dimension of the

boundary. As we go deep into the self-similar structure, i.e., increase g, the dimension for larger

values of ", d1, increases whereas the second dimension remains constant (within numerical

errors). Besides, there is a tendency of d1 towards d2 for increasing g, until g = 4 is reached and

only one dimension is present for the specified interval of ". The dependency of the dimension

on the order of generation is due to the complex hierarchical structure of the island chain and

cantori. The inner we go into this structure, the longer the orbits stay inside cantori, leading

to very long escape times (Figure 4.7 and ⟨Tesc⟩ in Table 4.2). These extremely long times

impose difficulty in the prediction of the final state, hence the dimension of the inner levels is

larger (111). A similar result was found in Ref. (113) for the dynamics of a two-dimensional

advection of a flow. Furthermore, the dimension and mean escape time for the second power

law regime do not change significantly. This is so because at that scale of " we are actually

measuring an inner, finer level of the self-similar hierarchy. Followed by that, we expect that

by decreasing even more the uncertainty in the initial conditions, more power law regimes with

different exponents will be found, bounded, of course, to the value of � > 0, and d < D.
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5 CHARACTERIZATION OF STICKINESS USING RECURRENCE PLOTS

In this chapter, we present a brief review on the basics of recurrence plots (RPs) and their

quantification analysis. For a detailed discussion on all the features of the recurrence plot and its

quantification analysis, we refer the reader to Refs. (72–76) and references therein. We present

the different patterns the graphical visualization of RPs can exhibit, and we define some of the

most used quantification measures of RPs. We also introduce the little-known Slater’s theorem,

and relate it to the recurrence time entropy. We illustrate all of these quantification measures

using the standard map [Eq. (3.3)] for different parameter values. We then compute the Pearson

correlation coefficient between these measures and the largest Lyapunov exponent, �1, in order

to find the optimal RP-based measure for chaotic detection. Motivated by Slater’s theorem, we

choose the recurrence time entropy (RTE) as our mathematical tool for dynamical characteri-

zation, and we perform a similar approach as for the finite-time Lyapunov exponent (FTLE) in

Section 3.2 to obtain the probability distribution of finite-time RTE. We use this distribution to

identify the specific areas in phase space that correspond to the modes of the distribution and

we compute the cumulative distribution of the trapping times in each one of these regions.

5.1 RECURRENCE PLOT

5.1.1 Definition

The state of a dynamical system in a d-dimensional phase space can be specified by d state

variables in the form of a vector

x(t) =
(
x1(t), x2(t),… , xd(t)

)T
. (5.1)

Usually, there is a time-evolution law that determines the state of the system at each instant of

time t given the state at any particular moment. For Hamiltonian systems, for example, this

law is given by Hamilton’s equations (2.1). More generally, for time-continuous systems, the

time-evolution law is given by a set of differential equations

dx(t)

dt
= F(x(t)), (5.2)

where F ∶ ℝd
→ ℝd . If F is known, it is possible to integrate (5.2), either analytically or

numerically, to obtain the trajectory x(t) in phase space. For discrete systems, the time-evolution

law is given by a mapping

xn+1 = M(xn) = Mn(x0), (5.3)

where M ∶ ℝd
→ ℝd and the future of the system, xn+1, is uniquely determined by an initial

state x0. The standard map (3.3) is an example of such a system.
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The recurrence plot (RP), first introduced by Eckmann et al. (71), is a graphical representa-

tion of the recurrences of time series of dynamical systems. High-dimensional systems are diffi-

cult to treat due to the high-dimensionality of phase space, and the original idea behind the RPs

was to provide a mathematical and graphical tool to investigate even these high-dimensional sys-

tems. An RP allows us to analyze the d-dimensional space trajectory through a two-dimensional

representation of its recurrences given by the recurrence matrix formally defined as

Rij = H
(
" − ‖xi − xj‖

)
, (5.4)

where i, j = 1, 2,… , N , andN is the number of samples of the times series. The functionH(⋅)

is the Heaviside unit step function, " is a small threshold, and ‖xi − xj‖ is the spatial distance in

phase space between two states, xi and xj , in terms of a suitable norm. A class of vector norms

that is generally used is the p-norm, defined as

‖x‖p =
(

n∑

i=1

||xi||
p

)1∕p

. (5.5)

For p = 1, we obtain the taxicab (or Manhattan) norm, and p = 2 corresponds to the traditional

Euclidean norm. As p approaches infinity, the p-norm approaches the maximum (or supremum)

norm

‖x‖∞ = max
i

(||xi||
)
, (5.6)

which corresponds to choosing the maximum of all components of x. Throughout this chapter,

unless mentioned otherwise, we consider the maximum norm (5.6). This norm is more often

used because it is computationally faster to compute, it is independent of the phase space di-

mension, and it allows some analytical results (115).

The recurrence matrix R is a binary matrix that contains the value 1 for recurrent states and

the value 0 for non-recurrent ones. Since Rii ≡ 1 by definition, the RP always exhibits a main

diagonal line, called line of identity (LOI), and the RP, for fixed ", is symmetric with respect to

this line. Since it is often impossible to find exact recurrent states in the sense that xi ≡ xj , the

recurrence of two states is defined as they are sufficiently close to each other up to a distance ".

This statement is expressed by the Heaviside function in (5.4). A special parameter of the RP is

the threshold ". Regardless of the used norm, this parameter has to be chosen carefully. If " is

chosen too large, almost every point is recurrent with every other point. On the other hand, if "

is chosen too small, there will be almost no recurrent states, and we cannot learn anything from

the RP. Hence the choice of " has to be a compromise between having " as small as possible,

but at the same time with a sufficient number of recurrent states.

Several “rules of thumb” have been proposed to this day in the literature. However, in gen-

eral, the optimal choice of " depends on the application and the experimental conditions. Ini-

tially, it was thought that the optimal choice would be to consider " as a few percent of the mean
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or maximum phase space diameter (116), without exceeding 10% (117). However, the influence

of noise may demand a larger threshold. An alternative is to choose " such that the recurrence

point density, i.e., the recurrence rate, is fixed (118). This would introduce the need of finding

the optimal value of the recurrence rate, though. A further possibility, introduced to analyze

processes with noise (72, 115), is to choose " as five times larger than the standard deviation

of the observational noise. A more recent study has shown that using " → 0 is not the best

choice either (119). Thus, all approaches have their strengths and weakness, and regardless of

the choice we make, the effect of a finite " will always be present. Therefore, in our analysis, we

follow a similar approach to Refs. (72, 115), and consider the threshold to be 10% of the time

series standard deviation, i.e., " = �∕10. Regarding the calculation of the standard deviation,

when dealing with d-dimension data, the problem of how to calculate its standard deviation

arises. The simplest approach one could consider is (i) to concatenate the time series of each

component, creating a new dN-dimensional vector

(x
(1)

1
, x

(1)

2
,… , x

(1)

N
, x

(2)

1
, x

(2)

2
,… , x

(2)

N
,… , x

(d)

1
, x

(d)

2
,… , x

(d)

N
)T ,

where N is the time series length, and compute its standard deviation. Another approach one

could choose is (ii) to consider a standard deviation vector, ���, where each component is the stan-

dard deviation of each component of the time series individually, and compute its norm. Here,

we consider approach (ii) because choosing approach (i) when one time series has a different

value range than the others might strongly bias the standard deviation. Furthermore, we con-

sider the maximum norm (5.6). The influence of " on our results will be discussed later on in

this chapter.

5.1.2 Structures in a Recurrence Plot

As we have previously mentioned, the RP is a graphical tool to visualize phase space trajec-

tories. We represent the recurrent states by a colored dot, and the recurrence matrix R displays

different patterns according to the dynamics of the underlying system. These patterns have

in their composition small-scale structures which are the basis for the quantitative analysis of

RPs (72, 75). They are:

• Isolated recurrence points: they occur when the states are rare or if they do not persist for

any time.

• Diagonal lines: they occur when a segment of the trajectory runs parallel to another seg-

ment for l time units, i.e., when the trajectory returns to the same region of phase space at

different times. Mathematically, a diagonal line of length l is defined by

(
1 − Ri−1,j−1

)(
1 − Ri+l,j+l

) l−1∏

k=0

Ri+k,j+k = 1. (5.7)
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The diagonal lines can have two directions. The ones parallel to the LOI represent the

parallel running of trajectories for the same time evolution, while the diagonal lines per-

pendicular to the LOI represent parallel running with opposite time direction. The lengths

of diagonal lines in an RP are directly influenced by the degree of determinism or pre-

dictability inherent in the system dynamics. When a system is predictable, similar states

(Rij = 1) tend to lead to similar future states, Ri+1,j+1 = 1, with a high probability. In

perfectly predictable systems, the diagonal lines in the RP would be infinitely long. On

the other hand, stochastic systems exhibit only single points or short lines in the RP. In

such systems, close states have a very low probability of leading to a future state where

Ri+1,j+1 = 1. For chaotic systems, where close states diverge exponentially, the diagonal

lines are very short, and the faster the divergence, the shorter the diagonals.

• Vertical lines: they mark a time length in which a state does not change or changes very

slowly. Formally, a vertical line of length v is defined by

(
1 − Ri,j−1

)(
1 − Ri,j+v

) v−1∏

k=0

Ri,j+k = 1. (5.8)

This is a typical behavior of laminar states (120) and it seems that the state is trapped for

some time.

• White vertical lines: they correspond to the time it takes for the trajectory to return to a

previous state, i.e., they correspond to the recurrence time (69, 70, 75, 121, 122). A white

vertical line of length w is defined by

RijRi,j+w

w−1∏

k=0

(
1 − Ri,j+k

)
= 1. (5.9)

The recurrence matrices in Figure 5.1 illustrate the appearance of RPs for different dynamical

processes. For uncorrelated noise [Figure 5.1(a)], there is a large number of single points with

almost no line structures, while for a periodic function, all the points lie on long diagonal lines

separated by a fixed distance [Figure 5.1(b)]. For the quasiperiodic dynamics, all points also

lie on diagonal lines with a nonconstant distance separating them [Figure 5.1(c)]. However,

there are few isolated single points. These occur due to the quasiperiodicity of the process. For

longer times, these points will fill the entire diagonal. For the chaotic dynamics when there are

still islands present in the phase space of the standard map (k = 1.5), the RP is characterized

by both long and short diagonal lines organized in a non-regular way [Figure 5.1(d)]. However,

this is not the case for all chaotic orbits. The RP of a sticky orbit [Figure 5.1(e)], i.e., a trapped

orbit which behaves similarly as a quasiperiodic but exhibit �1 > 0, seems to be in between the

quasiperiodic [Figure 5.1(c)] and chaotic [Figure 5.1(d)] cases. The diagonal lines are longer

than those in the chaotic case, indicating that the sticky orbit is “more regular” than the chaotic
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Figure 5.1: Examples of recurrence matrix for different dynamical processes. (a) Uniformly
distributed white noise, generated using the Numpy (123) function random.normal with zero
mean and standard deviation equals to unity, (b) periodic dynamics, generated using a sine wave
x(t) = sin(t), for t ∈ [0, 50], (c) quasiperiodic dynamics (�1 = 0.00014), generated using the
standard map (3.3) with k = 1.5, and initial condition (�0, p0) = (1.0, 0.0), (d) chaotic dynamics
(�1 = 0.43214), generated using the standard map (3.3) with k = 1.5 and initial condition
(�0, p0) = (2.85, 0.0), (e) chaotic dynamics (�1 = 0.33276), generated using the standard map
(3.3) with k = 1.5 and initial condition (�0, p0) = (1.6, 0.0), and (f) chaotic dynamics (�1 =

2.18496), generated using the standard map (3.3) with k = 9.0 and initial condition (�0, p0) =

(3.0, 0.0). The threshold is " = �∕100 in (a) and " = �∕10 for (b)-(f), where � is the standard
deviation of the time series. The Lyapunov exponent of (c)-(f) have been calculated considering
1.0 × 105 iterations.

Source: the author.

one, but the diagonal lines are not as long as those in the quasiperiodic case. Moreover, the

vertical distances between the diagonal lines have some regularity.

5.1.3 Recurrence Quantification Analysis

Therefore, the visual representation of RPs can offer valuable insights into the dynamics of

the underlying system. However, due to the user’s interpretation and intuition subjectivity, only

the visual representation is not enough for a complete and accurate description. About three

decades ago, Zbilut and Webber introduced quantities based on the diagonal and vertical lines

to quantify RPs (117, 124, 125), which is now called recurrence quantification analysis (RQA).
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The simplest measure of the RQA is the recurrence rate,

RR =
1

N2

N∑

i,j=1

Rij , (5.10)

which is a measure of the density of recurrence points in the RP. In the limit N → ∞, RR

corresponds to the probability that a state recurs to its neighborhood in phase space. More

complex measures are based on the line structures in the RP. The following measures are based

on the histogram PD(l) of diagonal lines of length l, defined by

PD(l) =

N∑

i,j=1

(
1 − Ri−1,j−1

)(
1 − Ri+l,j+l

) l−1∏

k=0

Ri+k,j+k. (5.11)

Similarly to the density of recurrence points in the RP (RR), the determinism, DET, is defined

as the fraction of the recurrence points that form diagonal lines of at least length lmin

DET =

∑N

l=lmin
lPD(l)

∑N

l=1
lPD(l)

. (5.12)

As we have seen, periodic signals are characterized by long diagonal lines (large DET), whereas

chaotic dynamics is characterized mainly by short diagonal lines (small DET). For stochastic

processes there are no diagonal lines, save for very short ones due to chance recurrences (DET ≈

0). Therefore, DET can be understood as the predictability of the process. The ratio of DET and

RR has been applied to the study of physiological systems and it is useful in describing dynamical

transitions since during certain transitions the RR decreases while DET remains constant (124).

The variable ratio (RATIO) can be computed from

RATIO = N2

∑N

l=lmin
lPD(l)

(∑N

l=1
lPD(l)

)2
. (5.13)

A diagonal of length l indicates that a portion of the trajectory remains near another segment

of the trajectory for l units of time, suggesting a connection to the divergence of these segments.

The diagonal line length,

L =

∑N

l=lmin
lPD(l)

∑N

l=lmin
PD(l)

, (5.14)

is the average time two segments of the trajectory stay close to each other, and it can be in-

terpreted as the mean prediction time. Related to L is the maximal line length in the diagonal

direction, Lmax

Lmax = max
({

li

}Nl

i=1

)
, (5.15)
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where N
l

is the total number of diagonal lines. The smaller Lmax the more divergent the trajec-

tories, and a relation betweenLmax and the largest Lyapunov exponent can be found (72). Lastly,

the Shannon entropy of the frequency distribution of the diagonal lines, defined as

SD = −

lmax∑

l=lmin

pD(l) ln pD(l), (5.16)

where pD(l) = PD(l)∕Nl
, reflects the complexity of the deterministic structure in the system.

Analogously to the measures based on the diagonal lines, Marwan et al. (120) proposed

additional recurrence quantifications based on the vertical lines in the RP. These measures are

based on the histogram of vertical lines of length v, defined by

PV (v) =

N∑

i,j=1

(
1 − Ri,j−1

)(
1 − Ri,j+v

) v−1∏

k=0

Ri,j+k. (5.17)

Analogous to the definition of DET [Eq. (5.12)], the density of recurrence points forming ver-

tical structures can be computed by

LAM =

∑N

v=vmin
vPV (v)

∑N

v=1
vPV (v)

, (5.18)

and is called laminarity. LAM corresponds to the occurrence of laminar states and will decrease

if the RP consists of more single recurrence points than vertical structures. Similarly to Eq.

(5.14), the average length of vertical structures is defined as

TT =

∑N

v=vmin
vPV (v)

∑N

v=1
PV (v)

, (5.19)

and is called trapping time. TT is an estimate of the mean time that the system stays at a specific

state or how long the state is trapped. The maximum length of the vertical structures measures

the longest vertical line in the RP and is defined as [cf. Eq. (5.15)]

Vmax = max
({
vi
}Nv

i=1

)
, (5.20)

where Nv is the total number of vertical lines. Lastly, the Shannon entropy of the distribution

of vertical lines measures the complexity of the vertical structures in the RP and is defined by

SV = −

vmax∑

v=vmin

pV (v) ln pV (v), (5.21)

where pV (v) = PV (v)∕Nv.

We can also use the recurrence times to define measures of complexity. This is particularly
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interesting due to Slater’s theorem (77–79). The theorem states that for any irrational rotation,

with rotation number !, over a unit circle, there are at most three different return times to a

connected interval of size � < 1. Furthermore, the third return time is always the sum of the

other two, and two of these three return times are consecutive denominators in the continued

fraction expansion [Eq. (2.19)] of the rotation number. Therefore, we can categorize the various

solutions of a nonlinear system by simply counting the number of unique return times of an

orbit. If there is only one return time, the orbit is periodic (black color in Figure 5.2); if there

are exactly three returns, the orbit is considered quasiperiodic (blue color in Figure 5.2). If

the number of returns exceeds three, then the orbit is deemed chaotic (cyan to gray color in

Figure 5.2). This approach has been used to identify chaotic and quasiperiodic orbits in the

standard map (126,127) and, more recently, to explore the parameter space of a one-dimensional

map (128). It is an effective technique, however, it is not immediately evident how to apply it

to detect sticky orbits in two-dimensional quasi-integrable Hamiltonian systems, for example.

Therefore, we propose using the distribution of white vertical lines, which are an estimate of the

recurrence times of an orbit (69, 70, 75, 121, 122), to define the recurrence time entropy (RTE).

The histogram of white vertical lines of length w, Pw(w), is defined by

Pw(w) =

N∑

i,j=1

RijRi,j+w

w−1∏

k=0

(
1 − Ri,j+k

)
, (5.22)

such that the RTE is defined by (68, 70)

RTE = −

wmax∑

w=wmin

pw(w) ln pw(w), (5.23)

where pw(w) = Pw(w)∕Nw, and Nw is the total number of white vertical lines. The RTE was

originally introduced without any connection to RPs (68), and it was shown that it can provide a

good estimate for the Kolmogorov-Sinai (KS) entropy (129) and the largest Lyapunov exponent

(130).

It is important to evaluate (5.22) with careful attention. The presence of border lines, which

are cut short by the borders of the RP, in a finite RP can introduce bias to the distribution of

white vertical lines, potentially affecting RQA measures, like the RTE (131). To mitigate these

border effects, we exclude white vertical lines that start and end at the RP’s borders from the

distribution. In this manner, a periodic orbit, which only has one return time (its own period),

will result in RTE = 0. A quasiperiodic orbit, with three return times, will yield a relatively

low RTE value, while a chaotic orbit will exhibit a high RTE value. As mentioned before, a

chaotic orbit that experiences stickiness spends a significant amount of time in the vicinity of an

island where its behavior resembles that of a quasiperiodic orbit. Consequently, we expect that

the RTE of sticky orbits will be lower than that of chaotic orbits but higher than what would be

observed for a quasiperiodic orbit.
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Figure 5.2: The number of unique recurrence times, � , for 1000 × 1000 uniformly distributed
initial conditions in a grid on the entire phase space [−�, �] × [−�, �] for k = 1.5. Each initial
condition is chosen as the center of the recurrence region, with size " = �∕10, where � is the
standard deviation of the time series generated by it. We iterate each initial condition for 2 × 106

times.

Source: the author.

5.1.4 RQA Measures for the Standard Map

Next, we illustrate the application of the RQA for the standard map [Eq. (3.3)]. We choose a

fixed initial condition, (�0, p0) = (0.0, 1.3), and change the nonlinearity parameter in the interval

k ∈ [0, 5], with Δk = 0.001. For each parameter value, we generate a time series of lengthN =

5000 and compute the recurrence rate [Eq. (5.10), and Figure 5.3(b)], the RQA measures for

the diagonal lines [Eqs. (5.12)-(5.16), and Figures 5.3(c)-(g)], for the vertical lines [Eqs. (5.18)-

(5.21), and Figure 5.3(h)-(k)], and the recurrence time entropy [Eq. (5.23), and Figure 5.3(l)].

We also calculate the largest Lyapunov exponent, �1 [Figure 5.3(a)].

The measures based on the diagonal lines DET, RATIO, and Lmax capture quite well the

regular/chaotic transitions, but the mean diagonal line length, L, and the entropy of diagonal

lines, SD, do not detect all of them. There is a clear anti-correlation between DET and Lmax and

�1. Whenever �1 > 0, DET and Lmax decrease, and in the regular windows, they exhibit a large

value. However, during the regular windows (�1 ≈ 0), DET and Lmax have a few isolated peaks

and falls even though we do not observe such behavior in �1 [Figure 5.3(a)]. These might be

fixed considering a longer time series. RATIO, on the other hand, exhibits a positive correlation

with �1, increasing its value for chaotic regions and keeping a small value when �1 ≈ 0. It does

not detect, however, the small chaotic region for k ≈ 0.5.

Some of the measures based on vertical lines also capture the transition from regular to
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Figure 5.3: (a) The largest Lyapunov exponent, (b) the recurrence rate, the RQA measures (c)-(g)
based on diagonal lines, given by Eqs. (5.12)-(5.16), respectively, and (h)-(k) based on vertical
lines, given by Eqs. (5.18)-(5.21), respectively, and (l) the recurrence time entropy [Eq. (5.23)]
as a function of the nonlinearity parameter k, with a step of Δk = 0.001. The length of the
time series is N = 5000, and for each parameter value, we choose a fixed initial condition of
(�0, p0) = (0.0, 1.3).

Source: the author.

chaotic dynamics. The mean trapping time, TT, and the longest vertical line, Vmax show clear

maxima at the regions where �1 > 0, and zero values when �1 ≈ 0 [Figures 5.3(i) and 5.3(j)],

indicating that no vertical lines are detected in the last case. The entropy of vertical lines, SV ,

exhibits high values in the chaotic windows, however, it falls to zero for some parameter values

in these regions [Figure 5.3(k)], and the laminarity, LAM, does not give us any information for

large values of k [Figure 5.3(h)]. The recurrence rate [Figure 5.3(b)] also does not capture the

dynamical transitions. However, recently Palmero et al. demonstrated that by considering an

ensemble of initial conditions and calculating RR for all of them, it is possible to find orbits that

differ from the average behavior, and these orbits are the ones that experience stickiness (132).

The measure based on the recurrence times (white vertical lines) also exhibits a positive
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Table 5.1: The correlation coefficient, � [Eq. (5.24)], between �1 and each one of the corre-
sponding RQA measures for the standard map (3.3) in the interval k ∈ [0, 5] (Figure 5.3) with
a time series of length N = 5000 and initial condition (�0, p0) = (0.0, 1.3) for each parameter
value.

RR DET RATIO L Lmax SD LAM TT Vmax SV RTE

−0.42 −0.96 0.92 −0.19 −0.91 −0.21 −0.07 0.89 0.70 0.48 0.95

Source: the author.

correlation to �1. Whenever �1 > 0, the RTE is large. Also, when �1 ≈ 0, the RTE assumes low

values. Furthermore, there are several values of k for which RTE → 0, indicating that at these

points, the initial condition (�0, p0) = (0.0, 1.3) is very close to a periodic orbit. The oscillations

in the regular windows are expected to diminish as we increase the length of the time series.

Therefore, at least qualitatively, we can see that some of the aforementioned measures are

either positively or negatively correlated to �1. In order to quantify this correlation, we use the

Pearson correlation coefficient, defined by

�xy =
cov(x, y)

�x�y
, (5.24)

where cov(x, y) is the covariance of the two time series, x and y, and �x and �y are their respective

standard deviation. By calculating the correlation coefficient between �1 [Figure 5.3(a)] and all

the RQA measures presented in Figures 5.3(b)-(l), we find that DET and Lmax are negatively

correlated to �1, while RATIO, TT, Vmax, and RTE are positively correlated to �1. In both cases,

the absolute value of the correlation coefficient is high. The remaining measures exhibit a small

correlation coefficient (Table 5.1).

The RQA measures which generate the largest correlation coefficients are DET (−0.96) and

RTE (0.95). However, Zou et al. demonstrated that by calculating RR in windows during the

time evolution of the orbit (cf. Section 3.2), it is possible to detect transitions along the orbit

evolution (e.g. trappings) (127). They also showed that DET detects such transitions, but not as

efficiently as RR. Here, we seek a measure based on the intrinsic property of dynamical systems

that quasiperiodic orbits can have at most three different return times to a previous point on the

orbit. Therefore, we use the RTE as our mathematical tool to characterize chaotic dynamics.

5.2 RECURRENCE TIME ENTROPY

We have seen that the RTE captures the regular/chaotic transitions as we change the nonlin-

earity parameter k (Figure 5.3). To have a better visualization of the correspondence between �1
and the RTE, we plot in Figure 5.4 the values of �1 and RTE for 1000 × 1000 initial conditions

uniformly distributed in a grid in phase space (�, p) with k = 1.5, and in the parameter space
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Figure 5.4: (a)-(c) The largest Lyapunov exponent, �1, and (d)-(f) the recurrence time entropy,
RTE, for a 1000 × 1000 uniformly distributed initial conditions in a grid in phase space with
k = 1.5, for (a), (b), (d), and (e) and in parameter space (k, p), with �0 = 0.0 for (c) and (f).
Panels (b) and (e) are magnifications of the white boxes in (a) and (d), respectively, and the
dotted white line in (c) and (f) represents the initial condition used in Figure 5.3.

Source: the author.

(k, p) with �0 = 0.0. Figures 5.4(b) and 5.4(e) are magnifications of the white boxes in Figures

5.4(a) and 5.4(d), respectively. The RTE encompasses all the characteristics of the Lyapunov

exponent and more. In the chaotic sea, where the value of �1 is positive, the RTE is high, while

within the islands where �1 approaches zero, the RTE is low. Additionally, in regions where the

rotation number of the orbit approximates a rational number, the RTE is even lower (62,64) [in-

dicated by the transition from blue to purple in Figure 5.4(d)]. As we approach the elliptic points,

the RTE gradually decreases, and Figure 5.4(f) demonstrates the occurrence of bifurcations and

the transition from regular to chaotic behavior as k changes.

For the chosen parameter value of the standard map, namely k = 1.5, the system exhibits

several sticky regions, resulting in a bimodal distribution of the FTLE (54) [Figure 3.5(b)]. The

region between the main island and the period-6 satellite islands is particularly notable for ex-

hibiting stickiness. In this region, both the value of �1 and the RTE decrease compared to the

rest of the chaotic sea, demonstrating similar behavior. We also quantify the correlation between

�1 and RTE for the data presented in Figure 5.4 using Eq. (5.24). For Figures 5.4(a) and 5.4(d),

we obtain ��1,RTE = 0.93, for Figures 5.4(b) and 5.4(e), we obtain ��1,RTE = 0.89, and for Figures

5.4(c) and 5.4(f), we obtain ��1,RTE = 0.94. Figure 5.5 shows the RTE for a grid of 1000 × 1000

initial conditions uniformly distributed in the depicted phase space regions for six distinct values
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Figure 5.5: The RTE for a grid of 1000 × 1000 uniformly distributed initial conditions in the
depicted phase space regions of the standard map (3.3), with (a) k = 0.9, (b) k = 1.5, (c)
k = 3.93, (d) k = 4.0, (e) k = 5.3, and k = 6.908745. For each initial condition, we use a time
series of lengthN = 5000. The regular orbits are characterized by small values of RTE (black to
blue) while the chaotic orbits by a large value of RTE (green to red). The black points correspond
to orbits for which none, or only one return time has been found. Increasing the length of the
time series should decrease the size of the black regions. These regions also indicate the position
of the elliptic points.

Source: the author.

of k [cf. Figure 4.1] where for each orbit we generate a time series of lengthN = 5000. There is

a clear distinction from regular to chaotic dynamics for all values of k. The black to blue points

(low values of RTE) correspond to the regular orbits, while the green to red points (large values

of RTE) correspond to chaotic ones. We expect that by increasing the length of the time series,

the size of the black regions should decrease. These regions appear for orbits which exhibit only

one return time. This should occur only for periodic orbits, however, due to shortness of the

time series, quasiperiodic orbits may exhibit only one return time, especially when close to the

elliptic point.

Therefore, the RTE is an excellent measure to discern periodicity, weak chaos, and strong

chaos. Also, we obtain remarkably good results with the RTE considering only a short time

series (5000 data points). Next, we follow the evolution of a single chaotic orbit of the stan-

dard map over a long iteration time N . As time progresses, the orbit gradually fills the entire

chaotic component of the phase space. Typically, the stickiness phenomenon persists for con-

siderably long yet finite periods before the orbit escapes to the chaotic region. Consequently,

to gain a deeper understanding of the transitions occurring within the orbit’s dynamics, it is ad-

vantageous to consider a “finite-time” (cf. Section 3.2), denoted as n ≪ N . Thus, we calculate

the RTE throughout the evolution of a single chaotic orbit, dividing it into windows of size n
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denoted as
{
RTE(i)(n)

}
i=1,2,…,M

, where M = N∕n. Furthermore, we define the probability dis-

tribution of the RTE over finite-time intervals, P (RTE(n)), by generating a frequency histogram

of RTE(i)(n). An example of such a histogram is depicted in Figure 5.6(a) [cf. Figure 3.5(b)]

for N = 1010 and n = 200. Figure 5.6(b) exhibits the “time series” of the finite-time RTE,

focusing on the interval ranging from i = 4 × 104 to i = 7 × 104. Notably, abrupt changes in

the value of RTE(200) are observed, indicating transitions between different regimes within the

orbit’s dynamics. These fluctuations in the RTE value contribute to the emergence of multiple

modes within its probability distribution. As we have previously mentioned, Szezech et al. (54)

reported that for the specific value of k, the distribution of the finite-time Lyapunov exponent

displayed a bimodal pattern [Figure 3.5(b)]. Our findings reveal that the minor peak observed in

Figure 3.5(b) is, in fact, composed of multiple peaks, as suggested by Harle and Feudel (133).

The presence of multiple modes in the distribution is a consequence of the hierarchical

islands-around-islands structure embedded in the phase space. When the orbit lies within the

chaotic sea, the time-n RTE is high, corresponding to the largest peak in the distribution. Con-

versely, when the orbit becomes trapped near an island, the RTE decreases, leading to smaller

peaks in the distribution for lower values of RTE(200). As the orbit gets trapped in the vicinity

of an island, it may cross to a deeper level within the hierarchical structure, and these transitions

between different levels give rise to the multi-modal distribution (133). Furthermore, the closer

to zero is �1, the higher the hierarchical level of the island on which neighborhood the orbit is

trapped (46). Hence, multiple peaks are formed for small values of RTE.

To identify the specific areas in phase space that correspond to the peaks in the distribution,

we monitor the time series of RTE(200) and plot the 200 phase space positions (�, p) using dif-

ferent colors based on the ranges of RTE(200). The colored points, including blue, red, green,

and black, represent phase space positions associated with RTE(200) values within the intervals

[0.6, 0.8], [1.25, 1.33], (1.33, 1.48], and (1.48, 1.55], respectively [Figures 5.6(c) and 5.6(d)].

Each peak corresponds to a distinct hierarchical level of the structure, and the RTE allows an

effective differentiation between them. Furthermore, the black and green points shadow the

manifolds along which the non-trapped orbits exit the sticky region (134). Although only the

hierarchical levels surrounding the period-6 islands are displayed in Figure 5.6(d), the RTE dis-

tribution encompasses contributions from all island chains. For a comprehensive analysis, we

also examine the phase space points responsible for generating the peak for high RTE values.

Whenever RTE(200) falls within the range of [2.5, 4.0], we plot the corresponding 200 phase

space points (�, p) [Figure 5.7(a)]. The information conveyed by the phase space components in

Figures 5.6(c) and 5.7(a) complement each other: Figure 5.7(a) depicts the chaotic sea, repre-

senting the hyperbolic component of phase space, while Figure 5.6(c) displays the nonhyperbolic

one. Nonhyperbolicity can inhibit chaotic orbits from visiting some regions due to tangencies

between stable and unstable manifolds (50, 135, 136).

We can also quantify the duration of each stickiness regime, referred to as the “trapping

time” t, which represents the time interval between consecutive abrupt changes in the RTE. In
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Figure 5.6: (a) The finite-time RTE probability distribution for a single chaotic orbit with n =

200, N = 1.0 × 1010, k = 1.5, and (�0, p0) = (−3.0, 0.0). (b) The finite-time RTE “time series”
for the interval [40000, 70000]. The transitions between different regimes within the orbit’s
dynamics are clear. Panel (c) is the phase space points that generate the minor maxima in (a)
and (d) is a magnification of one of the period-6 satellite islands of (b) indicated by the red box.

Source: the author.

Figure 5.6(b), these trapping periods are clearly visible, and we define the boundaries of each

peak, indicated by the filled colors, as the limits of the stickiness regimes. By analyzing the

RTE(200) time series, we obtain a collection of trapping times
{
tj
}
j=1,2,...,Nt

and define the prob-

ability distribution of trapping times as P (t). Alternatively, we define the cumulative distribution

of trapping times, denoted as Q(�), as follows:

Q(�) =
∑

t>�

P (t) =
N�

Nt

, (5.25)

where N� represents the number of trapping times t > �, and Nt is the total count of trapping

times. Extensive research has established that fully chaotic systems exhibit an exponential decay
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Figure 5.7: (a) The phase space points that generate the larger peak for high values of RTE in
Figure 5.6(a) and (b) the log-log plot of the cumulative distribution of trapping times, Q(�), for
each sticky region identified in Figure 5.6(a) with N = 1011 and n = 200 (colored dots). The
inset is the log-lin plot of Q(�) of the phase space points shown in (a). The colors of the dots in
(b) match the colors of Figure 5.6(a).

θ

Source: the author.

in the distribution of trapping times (including its cumulative distribution). In contrast, quasi-

integrable Hamiltonian systems, which demonstrate the stickiness effect, display a power-law

decay (27,28,39–45). By utilizing the finite-time RTE, we are able to distinguish between these

two distinct behaviors present in the dynamics, specifically the hyperbolic and nonhyperbolic

components. The cumulative distribution of trapping times in the hyperbolic region follows an

exponential pattern [as shown in the inset of Figure 5.7(b)], whereasQ(�) for the nonhyperbolic

regions exhibits a power-law tail for large times [indicated by colored dots in Fig. 5.7(b)].

Overall, our findings indicates that the RTE is a robust and informative measure for charac-

terizing dynamical systems, especially for distinguishing different types of chaotic behavior and

identifying transitions in an orbit’s evolution. The multi-modal distribution of finite-time RTE

provides valuable insights into the system’s complex behavior, allowing us to identify specific

regions of interest and study trapping phenomena.

5.3 THE EFFECT OF THE THRESHOLD ON THE RTE

In Section 5.1.1 we made some considerations regarding the choice of the threshold ": we

chose " to be 10% of the time series standard deviation �, which were calculated considering a

standard deviation vector, ���, and taking its maximum norm [Eq. (5.6)]. In order to analyze the

effect of " on the previously shown results, we calculate the standard deviation using the (black)

concatenation approach mentioned in Section 5.1.1 and the norm approach, considering the

maximum (red) and Euclidean (blue) norms, as a function k, with the same initial condition as

in Figures 5.3 with a time series of length 5000 [Figure 5.8(a)]. The concatenation and maximum

norm approach yield similar standard deviations, while the Euclidean norm yields a larger value
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Figure 5.8: (a) The standard deviation, �, as a function of k for the orbit with initial condition
(�0, p0) = (1.3, 0.0) iterated for 5000 times, using the (black) concatenation approach and the
(red and blue) norm approach, considering the maximum and Euclidean norms, respectively,
and (b) the correlation coefficient between �1 and RTE, both evaluated in the interval k ∈ [0, 5],
as a function of the threshold " in units of the percentage of �.

Source: the author.

of �. However, all methods agree that chaotic orbits have a larger standard deviation, as expected.

To determine the optimal method for calculating � and an appropriate value of ", we com-

pute the correlation coefficient [Eq. (5.24)] between �1 and RTE as a function of " (in units

of %�) using the concatenation and norm approaches to calculate � for the same interval of k

and parameters as in Figure 5.3 [Figure 5.8(b)]. The three approaches yield similar correlation

coefficients. Even if we choose a very small " (e.g. 1% of �), we still obtain a high correlation

coefficient (≈ 0.93). Also, increasing " does not affect significantly the correlation coefficient,

indicating that in our case, the choice of " is not as sensible as it would be in other cases. In fact,

there is a range of values for " in which the results are good.
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6 DYNAMICAL PROPERTIES OF A BILLIARD MODEL

In this chapter we introduce another class of Hamiltonian systems: the billiard system. We

introduce the Birkhoff coordinates, which are the canonical conjugate variables for this kind of

system and we consider a family of billard systems whose shape depends upon some parameter

values. We present the billiard mapping and an algorithm to find the successive collisions of a

particle with the billiard boundary. Next, we show the phase and configuration spaces for several

parameter values and we calculate the largest Lyapunov exponent as a function of the billiard

shape. Finally, we also calculate the dynamical quantity introduced in Chapter 4, dig, and the

recurrence time entropy, RTE, introduced in Chapter 5.

6.1 BILLIARD DEFINITION

A billiard problem, or simply billiard, is one simplest dynamical systems to exhibit chaotic

motion. In its simplest two-dimensional formulation, one considers a point-like particle of mass

�, or an ensemble of particles, confined in a simply connected planar region Ω delimited by

hard walls. A billiard is a Hamiltonian system with potential V (q) = 0 within the boundary

and infinity on the boundary )Ω. The particles undergo elastic collisions with the boundary

)Ω such that only the direction of the velocity is changed and the angle of incidence equals the

angle of reflection (137). Due to the relative structural simplicity of billiards, the emergence

or not of chaotic behavior is fully dictated by the geometrical features of )Ω (137), i.e., the

presence of dispersing or defocusing components in the boundary )Ω (138). Thus, different

geometries generate different dynamical behaviors, namely, (i) fully regular (e.g. circular and

rectangular billiards (137)), in which all orbits lie on periodic or quasi-periodic tori, (ii) fully

chaotic (e.g. Sinai (139) and stadium (140) billiards), in which almost every orbit fills densely

the entire phase space, and lastly, (iii) mixed dynamics (e.g. oval (141, 142) and mushroom

billiards (31, 32, 143, 144)), in which the phase space is composed of both regular and chaotic

domains.

Billard systems have been studied in the context of both classical (31,32,43,44,137–145) and

quantum mechanics (146–150). Quantically, one is interested in obtaining the eigenfunctions

and eigenvalues of the Helmholtz equation
(
∇2 + k2

)
 k(q) = 0 in Ω, for k2 = 2�E∕ℏ2 (E is

the particle’s energy), assuming Dirichlet boundary conditions, i.e.,  k(q ∈ )Ω) = 0. In this

context, the statistical features of the spectrum of eigenenergies
{
En

}
and the morphological

aspects of the eigenstates  (n)

k
depend on whether the corresponding classical billiard is or is

not chaotic (151). The name “quantum chaology” has been given to this field of study, although

some authors rather use “quantum chaos” (95,152). Berry (153) argues that the latter should not

be used since the idea of exponential sensitivity to initial conditions makes no sense for quantum

systems. Nonetheless, this is just a matter of terminology.
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On the other end of the realm of mechanics, i.e., classical mechanics, one is interested in ob-

taining the classical trajectories in phase space. A classical billiard is a time-continuous system,

called a billiard flow. The whole classical dynamics of billiards can be divided into two pro-

cesses: (i) uniform motion within the billiard region Ω, since the potential is zero in this region,

and (ii) specular reflection with the boundary )Ω. As we have seen in Chapter 2, it is possible

to define an appropriate Poincaré section to visualize the trajectories of time-continuous system.

Billiard systems have the advantage of having a natural Poincaré section, which is the boundary

of the billiard. Let s be the coordinate at the boundary )Ω which is equal to the distance from

some point of reference at the boundary to a point where the particle gets reflected. If it is pos-

sible to parametrize the boundary of the billiard by the polar angle �, R(�), a convenient choice

for the point of reference is the one for which � = 0. In this case, the length s is defined as

s(�) = ∫
�

0

√

R2(�′) +

[
dR(�′)

d�′

]2
d�′ . (6.1)

Note that s is a cyclic coordinate, s ∈ [0,), where  corresponds to the length of the whole

boundary )Ω. Another natural coordinate is the angle of reflection, i.e., the angle � formed by

the particle’s trajectory just after the collision and the tangent line to the collision point. It is easy

to see that � ∈ [0, �]. The pair of coordinates (s, p), where p = cos �, are the canonical variables

for the billiard map, often called Birkhoff coordinates (154). The variable p is the momentum

in the tangential direction. Under these variables, the phase space volume is preserved on the

course of the dynamics, and the phase space is a cylinder [0,) × [−1, 1].

6.2 MODEL AND MAPPING

The Hamiltonian of a billiard system is

(p,q) =
p2

2�
+ V (q), (6.2)

where p is the momemum and q the position. As we have previously stated, the potential energy

is

V (q) =

{
0, for q ∈ Ω,

∞, otherwise.
(6.3)

Because the collisions are elastic, the Hamiltonian is the total energy of the system and it is

a constant of motion,  = E = const. Let us now suppose that the potential energy also

depends on some parameter � ∈ ℝ: V (q, �) = �W (q). This parameter may change the shape

of the region Ω, for example, and we can obtain a family of billiards whose shape continuously

changes as � changes. This problem is analogous to the problem of the robustness of integrability

discussed in Section 2.3. The parameter � can be understood as a perturbation to the shape of a

fully integrable billiard (e.g. circular billiard), leading to a quasi-integrable Hamiltonian system
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Figure 6.1: The billiard boundary for (a) 
 = 1, (b) 
 = 2, (c) 
 = 3, (d) 
 = 4, (e) 
 = 5, and
(f) 
 = 6 with different values of �, namely, (black) � = 0.0, (red) � = 0.15, (blue) � = 0.30,
(green) � = 0.75, (cyan) � = 0.90, and (purple) � = 0.99999.

Source: the author.

which displays all the features discussed in Chapter 2 (mixed phase space, KAM tori, cantori,

etc).

Here, we consider a family of billiards with the boundary shape,R(�), implicitly parametrized

by the equation (155)

R2 +
2
√
3�

9

R3

R0

cos (
�) = R2
0
, (6.4)

where 
 is an integer, � ∈ [0, 1) controls the shape of the boundary, and � = 0 yields a circular

shape. We consider R0 = 1. Figure 6.1 displays different boundary shapes for different values

of 
 and �. For each 
 we choose six values of �. For 
 = 3 and 
 = 4 we obtain an equilateral

triangle and a square-like shape, respectively. We notice that the number of edges is related to


 . The case 
 = 3 is particularly interesting because both � = 0 and � → 1 yield fully integrable

billiards.

The billiard map is a two-dimensional nonlinear mapping M ∶ ℝ2
→ ℝ2, such that

(sn+1, pn+1) = M(sn, pn) = Mn(s0, p0).
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Considering a particle initially at s0, or equivalently, at �0, with a initial tangential momentum

p0, or initial angle �0, it starts its motion from the initial position (x0, y0) given by, in Cartesian

coordinates,
x0 = x(�0) = R(�0) cos �0,

y0 = y(�0) = R(�0) sin �0.
(6.5)

The angle the tangent line to the point (x0, y0) makes with the horizontal axis, measured coun-

terclockwise, is

�0 = arctan

[
y′(�0)

x′(�0)

]
mod 2�, (6.6)

where the prime indicates the derivative with respect to �. In this way, the direction of the

particle’s velocity, measured from the horizontal axis counterclockwise is

�0 = �0 + �0 mod 2�. (6.7)

Between two subsequent collisions, the particle executes a uniform motion described by the

following equations:
x1 = x0 + v0 cos

(
�0
)
Δt,

y1 = y0 + v0 sin
(
�0
)
Δt,

(6.8)

with v0 = 1 and considering Δt to be the time interval between two collisions. Thus, the parti-

cle’s trajectory is

y(�1) − y(�0) = tan
(
�0
)[
x(�1) − x(�0)

]
. (6.9)

The slope of the particle’s trajectory after the collision is given by

�1 = �1 − �0 mod �. (6.10)

Therefore, the final form of the mapping is given by

M ∶

{
F (�n+1) = y(�n+1) − y(�n) − tan

(
�n
)[
x(�n+1) − x(�n)

]
,

�n+1 = �n+1 − �n mod �.
(6.11)

Figure 6.2(a) illustrates two successive collisions and the aforementioned angles. The next

collision point, �n+1, is obtained numerically from F (�n+1) = 0 using a bisection method, for

example. However, in our case, there is a more efficient algorithm to calculate �n+1, which we

will outline in the following. First, we consider a circle with radius Rmax = R(�∕
), which

is external to the billiard boundary [dotted black line in Figure 6.2(b) and 6.2(c)]. Next, we

calculate the time it takes for the particle to reach the interception point between the particle’s

trajectory [Eq. (6.8)] and the outer circle as x2
p
+ y2

p
= R2

max
[cyan dot in Figure 6.2(b)]. Thus,

we obtain the quadratic equation

(Δt)2 + 2
[
x0 cos�0 + y0 sin�0

]
Δt + x2

0
+ y2

0
− R2

max
= 0,
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Figure 6.2: (a) Illustration of two collisions on the billiard boundary and the angles used in
the billiard map. Panels (b) and (c) illustrate the algorithm for finding the next collision point,
discussed in the text.

Source: the author.

with solution

Δte =
−b +

√
b2 − 4c

2
, (6.12)

where
b = 2

[
x0 cos�0 + y0 sin�0

]
,

c = x2
0
+ y2

0
− R2

max
.

Hence, the position of the interception point in Cartesian coordinates and its angular position

are, respectively
xe = x0 + cos

(
�0
)
Δte,

ye = y0 + sin
(
�0
)
Δte,

�e = arctan

(
ye

xe

)
mod 2�.

(6.13)

After that, we find the position on the billiard boundary for the respective angle �e ≡ �a as

[orange dot in Figures 6.2(b) and 6.2(c)]

xa = R(�e) cos �e,

ya = R(�e) sin �e.
(6.14)

The tangent line that passes through (xa, ya) is given by [orange line in Figure 6.2(c)]

yt(x) = ya +
y′(�e)

x′(�e)
(x − xa). (6.15)

We now calculate the interception of this tangent line and the particle’s trajectory [lime green
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dot in Figure 6.2(c)] as yp = yt(xp):

y0 + sin
(
�0
)
Δtnew

e
= ya +

y′(�e)

x′(�e)

[
x0 + cos

(
�0
)
Δtnew

e
− xa

]
.

Isolating Δtnew
e

, we obtain

Δtnew
e

=
ya − y0 +

y′(�e)

x′(�e)
(x0 − xa)

sin�0 −
y′(�e)

x′(�e)
cos�0

, (6.16)

and the new interception point (xnew
e
, ynew

e
) [lime green dot in Figure 6.2(c)] and its angular po-

sition are given by, respectively,

xnew
e

= x0 + cos
(
�0
)
Δte,

ynew
e

= y0 + sin
(
�0
)
Δte,

�new
e

= arctan

(
ye

xe

)
.

(6.17)

If ||�newe
− �a

|| < TOL, ||xnewe − xa
|| < TOL and ||ynewe − ya

|| < TOL, with TOL = 10−11, we

consider �new
e

as the angular position of the particle’s collision with the billiard boundary, i.e.,

�1 = �new
e

. If not, we repeat this procedure until the tolerance is satisfied. This is an efficient

algorithm, however, it does not work when the boundary has convex components. Thus, we

limit our analysis to 
 ≤ 3.

6.3 NUMERICAL RESULTS

Therefore, we use the mapping (6.11) and the just described algorithm to find the successive

collisions with the boundary for 
 = 1, 2, 3 with different values of �. Figure 6.3 shows the

phase space for 75 randomly chosen initial conditions iterated for N = 3.0 × 103 times for

� = 0.4, 0.6, 0.8, 0.99999, where each line corresponds to a different value of 
 . The colored

curves (blue, red, and green) correspond to the regular orbits shown in Figure 6.4. The black

orbit corresponds to a chaotic orbit. For 
 = 1 and � = 0.4 [Figure 6.3(a)] we see a small

chaotic region around p = 0 surrounding a period-2 island. The elliptical fixed points are located

at s∕ = 0.25, 0.75, and p = 0. Since there are two elliptical points, there must exist two

hyperbolical points (Poincaré-Birkhoff theorem). Indeed, they are located at s∕ = 0.5, 1 and

p = 0. For higher (lower) values of p there exist other islands of stability which are surrounded

by smaller chaotic regions. These chaotic components, however, are not connected to the chosen

parameter values, similar to the phase space of the standard map [Eq. (3.3)] for k < kc. Near the

border of the phase space (p ≈ ±1), some curves spread along the entire s-axis. These curves

correspond to quasi-periodic orbits in which the perturbation slightly deforms their shape. They

are called invariant spanning curves and these orbits are called whispering gallery orbits. As
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Figure 6.3: The phase space of the billiard map (6.11) with the boundary implicitily defined
by Eq. (6.4) for 75 randomly chosen initial conditions iterated for N = 3.0 × 103 times with
(a)-(d) 
 = 1, (e)-(h) 
 = 2, and (i)-(l) 
 = 3. Each column corresponds to different values of �,
namely, (a), (e), (i) � = 0.4, (b)(f)(j) � = 0.6, (c)(g)(k) � = 0.8, and (d)(h)(l) � = 0.99999.

Source: the author.

� increases, the chaotic domain spreads along the p-axis due to the destruction of the invariant

quasi-periodic tori, and the connection of distinct chaotic domains. In the limiting case � → 1

[Figure 6.3(d)], there are no spanning curves and almost all islands have been destroyed, except

for the period-2 island around p = 0.

For 
 = 2, 3, the corresponding chaotic component in phase space is larger than when 
 = 1

for the same value of �. Also, as � approaches 1, several islands of stability reappear in the

chaotic sea, and for 
 = 3 the billiard boundary assumes the shape of an equilateral triangle, in

which all orbits are regular. However, several chaotic regions are still present in the phase space

even for � = 0.99999.

To quantify the dynamical behavior of the billiard model for different parameter values, we

calculate the largest Lyapunov exponent, �1. In order to do so, we need the Jacobian matrix [Eq.

(3.4)] of the mapping:

J =

( )�n+1

)�n

)�n+1

)�n
)�n+1

)�n

)�n+1

)�n

)
. (6.18)

Derivating (6.9) with respect to �n and �n (�0 = �n and �1 = �n+1), we obtain, respectively

)�n+1

)�n
=

(1 + tan2 �n)
)�n

)�n
Δx + y′(�n) − x

′(�n) tan�n

y′(�n+1) − x
′(�n+1) tan�n

, (6.19)

)�n+1

)�n
=

(1 + tan2 �n)Δx

y′(�n+1) − x
′(�n+1) tan�n

, (6.20)
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Figure 6.4: The configuration space of the billiard map for four different initial conditions with
(a)-(d) 
 = 1, (e)-(h) 
 = 2, and (i)-(l) 
 = 3. Each column corresponds to different values of �,
namely, (a), (e), (i) � = 0.4, (b)(f)(j) � = 0.6, (c)(g)(k) � = 0.8, and (d)(h)(l) � = 0.99999. The
respective orbit in phase space is shown as colored lines in Figure 6.3.

Source: the author.

where

Δx = x(�n+1) − x(�n),

)�n

)�n
=
x′(�n)y

′′(�n) − x
′′(�n)y

′(�n)

x′2(�n) + y
′2(�n)

,

x′(�) =
dx

d�
=

dR(�)

d�
cos � − R(�) sin �,

y′(�) =
dy

d�
=

dR(�)

d�
sin � + R(�) cos �,

x′′(�) =
d2x

d�2
=

d2R(�)

d�2
cos � − 2

dR(�)

d�
sin � − R(�) cos �,

y′′(�) =
d2y

d�2
=

d2R(�)

d�2
sin � + 2

dR(�)

d�
cos � − R(�) sin �,

R′(�) =
dR(�)

d�
=

a
R2 sin(
�)

2R0 + 3aR cos(
�)
,



91

R′′(�) =
d2R(�)

d�2
= a
R

{[
2R′ sin(
�) + 
R cos(
�)

][
2R0 + 3aR cos(
�)

]
−

−
2R

√
3�

3
sin(
�)

[
R′ cos(
�) + 
R sin(
�)

]}
×
[
2R0 + 3aR cos(
�)

]−2
.

To obtain the remaining two elements of the Jacobian matrix, we calculate the derivative of

(6.10) with respect to both �n and �n. We get

)�n+1

)�n
=
)�n+1

)�n+1

)�n+1

)�n
−
)�n

)�n
, (6.21)

)�n+1

)�n
=
)�n+1

)�n+1

)�n+1

)�n
− 1. (6.22)

As we have seen in Chapter 3, for volume-preserving maps, the determinant of the Jacobian

matrix, |J |, is equal to unity. However, by writing the Jacobian matrix in terms of the angles

(�, �), this condition is not satisfied (black curve in Figure 6.5). Indeed,

|J | =
)�n+1

)�n

)�n+1

)�n
−
)�n+1

)�n

)�n+1

)�n
,

=
)�n+1

)�n

(
)�n+1

)�n+1

)�n+1

)�n
− 1

)
−
)�n+1

)�n

(
)�n+1

)�n+1

)�n+1

)�n
−
)�n

)�n

)
,

= −
)�n+1

)�n
+
)�n

)�n

)�n+1

)�n
,

= −
(1 + tan2 �n)

)�n

)�n
Δx + y′(�n) − x

′(�n) tan�n

y′(�n+1) − x
′(�n+1) tan�n

+
)�n

)�n

(1 + tan2 �n)Δx

y′(�n+1) − x
′(�n+1) tan�n

,

= −
y′(�n) − x

′(�n) tan�n

y′(�n+1) − x
′(�n+1) tan�n

.

This outcome could be surprising, considering that billiard systems belong to the class of

Hamiltonian systems and are expected to be area-preserving. However, this becomes clear when

we recall that the variables (�, �) are not the canonical conjugate variables of the problem (156).

If we write the Jacobian matrix in terms of the Birkhoff coordinates (s, p) (154) as

 =

( )sn+1

)sn

)sn+1

)pn
)pn+1

)sn

)pn+1

)pn

)
(6.23)

with its elements given by

)sn+1

)sn
=

√
R2(�n+1) + R

′2(�n+1)

R2(�n) + R
′2(�n)

)�n+1

)�n
,

)sn+1

)pn
= −

√
R2(�n+1) + R

′2(�n+1)

sin �n

)�n+1

)�n
,
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Figure 6.5: The determinant of the Jacobian matrix in terms of (black) (�, �) and in terms of
(red) the Birkhoff coordinates (s, p) for 
 = 1 and � = 0.6 with (�0, �0) = (�, �∕2).

Source: the author.

)pn+1

)sn
= −

sin �n+1√
R2(�n) + R

′2(�n)

)�n+1

)�n
,

)pn+1

)pn
=

sin �n+1

sin �n

)�n+1

)�n
,

we obtain | | = 1 (red curve in Figure 6.5), as expected. It is important to mention that the

results do not depend on which coordinates one uses. Both (�, �) and (s, p) yield the same

dynamical behavior and the same Lyapunov exponents. The only difference is that the phase

space is slightly deformed when using (�, �) (156).

Figure 6.6 presents the behavior of �1 as a function of � ∈ [0, 1), with Δ� = 0.001, for three

different values of 
: 1, 2, and 3. For each value of � we consider N = 108 collisions. For

the case of 
 = 1 (black curve), we observe that as � increases, the average value of �1 also

increases. This behavior aligns with our previous findings where we discussed the increase in

the area of the chaotic component with � [Figures 6.3(a)-6.3(d)]. Similarly, for 
 = 2 and 
 = 3,

we note a similar trend of increasing �1 with �, although there are a few exceptions where �1
decreases for specific values of �.

The most noticeable difference between 
 = 1 and 
 = 2, 3 emerges when � → 1. In the

case of 
 = 3, the billiard takes the shape of an equilateral triangle, which exclusively exhibits

periodic and quasi-periodic orbits, leading to �1 → 0. On the other hand, for 
 = 2, the phase

space still exhibits both chaotic and regular regions. However, as � → 1, the area of the chaotic

component decreases [Figures 6.3(e)-6.3(h)], consequently resulting in a decrease in �1.

Throughout all three cases, there are several values of � where �1 undergoes sharp falls. It

is important to remember that the infinite-time Lyapunov exponent [Eq. (3.7)] is independent

of the initial condition. However, for numerical computations, we evaluate the finite-time Lya-

punov exponent, and as a result, the values of � corresponding to these sharp falls may vary

with different initial conditions. These abrupt drops in �1 can be attributed to the stickiness

effect: for specific parameter values and initial conditions, the chaotic orbits get trapped in the
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Figure 6.6: The largest Lyapunov exponent as a function of the parameter � for Δ� = 0.001

with (black) 
 = 1 and (�0, �0) = (�, �∕2), (red) 
 = 2 and (�0, �0) = (�∕2, �∕2), and (blue)

 = 3 and (�0, �0) = (�, 1.08). For each value of �, we consider N = 1.0 × 108 collisions. The
vertical dashed lines indicates the values of � of Figure 6.7.

Source: the author.

vicinity of sticky regions [Figures 6.7(a)-6.7(c)], leading to smaller values of �1. These trapping

phenomena become more evident when examining Figures 6.7(a) and 6.7(c).

Therefore, �1 characterizes well the dynamical behavior of a single initial condition as �

changes. It is also useful to consider a grid of initial conditions distributed in the entire phase

space to analyze the effect of different initial conditions [Figures 6.7(d)-6.7(f)]. For 
 = 1 and

� = 0.785 [Figure 6.7(d)], a sticky region can clearly be seen around the chain of four periodic

islands (green to blue). Also, in the border of the chaotic component, we observe that another

small chaotic component arises with a very small area, and hence very small �1. As � increases,

this small chaotic domain will increase and merge with the large chaotic sea (green). For 
 = 2, 3

[Figures 6.7(e) and 6.7(f)] there are no sticky regions as evident as in the previous case.

The dynamical quantity introduced in Chapter 4 as the number of zeros after the decimal

point of the convergence of the weighted Birkhoff average, dig [Eq. (4.5)], can also be used to

characterize the dynamics of billiard systems [Figures 6.7(g)-6.7(i)]. Analogously to what we

have done in Chapter 4, we consider the function ℎ = cos �, as � is also a cyclic coordinate

with period 2� such as the coordinate variable in the standard map. For each initial condition,

we consider a total number of collisions of 2N = 2 × 104. For 
 = 2, 3, the islands exhibit a

large value of dig, however, some of the orbits within the islands exhibit a small value of dig

(green). These orbits correspond to the orbits whose rotation number approximates a rational

number, thus breaking one of the assumptions (Diophantine condition) of Theorems 1.1 and 3.1

of Ref. (64) and decreasing the convergence of the weighted Birkhoff average. For 
 = 1, the

orbits around the elliptic point have a large value of dig, however, the farther from this point,

the smaller the value of dig (red to green). Nevertheless, in all three cases, all chaotic orbits

exhibit a small value of dig (blue) and even though the islands and the spanning invariant curves
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Figure 6.7: (a)-(c) The phase space of a single chaotic orbit with initial conditions (a) (�0, �0) =
(�, �∕2), (b) (�0, �0) = (�∕2, �∕2), and (c) (�0, �0) = (�, 1.08) for N = 2 × 106 collisions. (d)-
(f) The largest Lyapunov exponent, �1 [Eq. (3.20)], (g)-(i) dig quantity [Eq. (4.5)], and (j)-(l)
the recurrence time entropy, RTE [Eq. (5.23)], for 1000 × 1000 initial conditions uniformly
distributed in a grid on the entire phase space. Each column corresponds to specific values of 

and � [dashed vertical lines in Figure 6.6]: (left column) 
 = 1 and � = 0.785, (middle column)

 = 2 and � = 0.549, and (right column) 
 = 3 and � = 0.375.

Source: the author.
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show a relatively small value of dig (≈ 10), it is still possible to distinguish between regular and

chaotic orbits using this measure. Also, it is worth mentioning that the length of the orbits used

to generate Figures 6.7(g)-6.7(i) is considerably smaller than the length used for the standard

map [Figure 4.1]. By increasing the length of the orbits, we expect a much better convergence

rate for the weighted Birkhoff average, i.e., a larger value of dig for the regular orbits.

Finally, the recurrence time entropy, RTE [Eq. (5.23)], can also be an alternative measure for

distinguishing regular and chaotic behavior in billiard systems. Slater’s theorem has been used

to detect quasi-periodic orbits for billiard systems (157), and as a consequence of the validity of

the theorem for billiard systems, the RTE yields similar results as it does for the standard map

[Figures 6.7(j)-6.7(l)]. We consider N = 5000 collisions and we use the Birkhoff coordinates

as our state variables to construct the recurrence matrix using the maximum norm. We consider

the threshold to be 10% of the time series standard deviation, which is calculated using the

maximum norm approach discussed in Chapter 5.

The orbits around the elliptic point yield zero RTE (black) as only one return time has been

found for the given time series length and the chaotic sea exhibits a large value of RTE. For


 = 1 and � = 0.725 [Figure 6.7(j)], around the sticky region, observed in both Figures 6.7(a)

and 6.7(d), there is a decrease in the RTE, indicating the trapped orbits. Lastly, the invariant

spanning curves also yield a small value of RTE.

Therefore, all three dynamical quantities analyzed in this Chapter provide good results for the

distinction of regular and chaotic behavior for billiard systems. The largest Lyapunov exponent

and the recurrence time entropy can also be used to detect sticky orbits. The latter, together

with the dig quantity, has the advantage of not needing the Jacobian matrix of the system. For

systems where we know explicitly the equations of motion (or the equations of the mapping), the

Jacobian matrix can be easily obtained. However, for systems where there are no such explicit

equations, as in the case of billiard systems, obtaining the expressions for the matrix can be a

difficult, and sometimes impossible, task.
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7 FINAL REMARKS

In this thesis we have analyzed the dynamics of Hamiltonian systems by means of two relative

new and non-standard dynamical quantities. The development of efficient and accurate mathe-

matical tools to categorize orbits with respect to their dynamical behavior (chaotic or regular)

is of major importance, specially when dealing with two-dimensional Hamiltonian systems, in

which chaotic and regular regions are disconnected domains.

Initially, we made a brief survey on the features of the standard map, which is a paradigmatic

model in the field of Hamiltonian chaos. We have shown (as several other authors have as

well) that in spite its mathematical simplicity, this model encompasses all features of quasi-

integrable Hamiltonian systems discussed in Chapter 2 such as mixed phase space and sticky

regions due to cantori. We also introduced the Lyapunov exponents (LEs) which are the most

widespread diagnostic for the detection of chaotic behavior and they hold in their definition the

most important feature of chaotic motion: the sensitivity to the initial conditions, i.e., they are a

measure of the average exponential rate of divergence or convergence of nearby orbits in phase

space. However, due to numerical limitations, it is impossible to reach the infinite-time definition

of the LEs, and we have shown that the presence of sticky regions in phase space makes the LEs

not the optimal choice to detect whether quasi-integrable Hamiltonian systems exhibit chaotic

behavior or not.

We also reviewed Zaslavsky’s derivation of the Fokker-Plank-Kolmogorov (FPK) equation

(27, 47, 82, 86–88), which results in normal transport, and showed that for several values of the

nonlinearity parameter, k, of the standard map, this theoretical prediction fails, and the system

exhibits anomalous diffusion. Furthermore, we presented the generalization of the diffusion

process and introduced the diffusion exponent, which characterizes the anomalous diffusion.

Anomalous diffusion is related to the existence of accelerator mode islands and a particular

value of k, namely, k = 6.908745, yields an accelerator mode of period 1 with a self-similar

hierarchical structure of islands-around-islands (88). We have analyzed the escape time and

the island’s boundary dimension for different levels in this self-similar structure. We used the

uncertainty fraction method (101–103) to obtain the box-counting dimension of the boundary,

and to define the final state of an orbit, i.e., whether it is regular or chaotic, we considered a

relative new dynamical quantity, dig, based on a weighted Birkhoff average. We considered this

methodology given the aforementioned convergence issues of the LEs discussed in Chapter 3,

and we have shown that using dig, we can accurately distinguish between regular and chaotic

orbits. We have also shown that the smaller the scale, the longer it takes for the orbits to escape

and the larger the dimension of boundary. Also, at different scales, the system exhibits different

effective fractal dimension, which differs from the asymptotic value obtained when the scale goes

to zero. Therefore, as we can relate the uncertainty in the initial conditions to the resolution of

a measuring device, at realistic length scales, the uncertainty of the measurement is determined
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by the effective fractal dimension, rather than by the fractal dimension’s asymptotic value.

Next, we focused on exploring a powerful mathematical tool for characterizing dynamical

systems: recurrence plots (RPs). We briefly reviewed some essential characteristics and features

of RPs, demonstrating that the graphical representation of RPs for different dynamical processes

is fundamentally distinct. We then defined the most commonly used measures based on the

diagonal and vertical lines to quantify RPs, which is called recurrence quantification analysis

(RQA). In addition these measures, we introduced a less known but valuable measure based on

the recurrences of an orbit, originally defined independently of RPs (68). The white vertical lines

in an RP, i.e., the vertical “gaps” between diagonal lines, provide an estimate of an orbit’s return

times. Measures based on the distribution of these return times, particularly the recurrence time

entropy (RTE) (68, 70), are noteworthy due to Slater’s theorem. According to this theorem,

quasiperiodic orbits can have at most three return times, which makes the RTE a promising

measure for the dynamical characterization of nonlinear systems.

We have calculated the RQA measures, including the RTE for the standard map as a function

of the nonlinearity parameter k and have shown that most of the measures capture the dynamical

transition from regularty to chaos and vice-versa, however two of them stand out: the determin-

ism (DET) and the RTE. Both of them yield a high correlation coefficient (either positive or

negative) with the largest Lyapunov exponent, and it has been shown that DET detects the tran-

sitions along the orbit’s evolution (e.g. dynamical trappings) (127). Therefore, as we seeked

a measure based on the intrinsic property of dynamical systems that quasiperiodic orbits can

have at most three return times, we chose the RTE as our RP-based measure for the dynamical

characterization of the standard map.

Our analysis have revealed that the RTE yields remarkably good results even considering

relatively short time series (5000 data points). It successfully distinguishes periodicity, weak

chaos (sticky orbits), and strong chaos. To identify the transitions a chaotic orbit experiences,

we calculated the finite-time RTE throughout the orbit’s evolution in windows of size n ≪ N ,{
RTE(j)(n)

}
j=1,2,…,M

, where N is the total length of the orbit and M = N∕n. Interestingly,

we have found the finite-time RTE distribution to be multi-modal, in contrast to the finite-time

LE distribution [Figure 3.5(b)], which only displays two modes (54). Furthermore, we have

identified the specific areas in phase space that correspond to the modes in the distribution, and

calculated the trapping time in each one of these regions. We have shown that the cumulative

distribution of trapping times exhibits a power law decay for the trapping in the sticky regions,

and an exponential decay for when the orbit wanders in the bulk of the chaotic sea.

Finally, we introduced another class of Hamiltonian systems: the billiard system. It is one

of the simplest dynamical systems to exhibit chaotic motion, and the manifestation of chaotic

behavior within this system depends on the intricate geometric properties of its boundary. We

have concentrated on a specific family of billiards characterized by two parameters: 
 ∈ ℤ

and � > 0. By changing these parameters, we have demonstrated the capability to transition

from fully integrable billiards (the circle, with � = 0 for all 
 and the triangle, with � → 1,
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and 
 = 3) to billiards with mixed phase space (intermediate values of �). Next, we explored

the quantification of chaotic behavior in this system using the dynamical measures we have

applied to the standard map, namely, the largest Lyapunov exponent, �1, the dig measure, and the

RTE. Our findings indicate that �1 increases, on average, with � for all the analyzed values of 
 .

However, distinct behavior arises as � approaches 1, wherein �1 decreases due to the emergence

of several islands of stability in phase space for 
 = 2 and 
 = 3. In this limiting case, for


 = 2, coexistence of islands and chaotic sea still persists, and the system exhibits a smaller yet

positive value of �1. Conversely, for 
 = 3, the billiard takes the shape of an equilateral triangle

featuring only periodic and quasiperiodic orbits, thereby causing �1 to approach 0.

To better comprehend the correspondence between �1, the standard measure for quantifying

chaotic motion, and the dig measure and RTE for the billiard system, we computed all three

quantities for a grid of initial conditions in phase space. As with the standard map, both the dig

measure and RTE stand as robust alternatives for detecting chaotic motion in phase space. The

dig measure exhibits sometimes smaller values for regular solutions than it does for the standard

map, however, by increasing the number of collisions, i.e., the iteration time, it is expected that

dig will converge for larger values in the regular regions. Nevertheless, even with the used

number of collisions (2.0 × 104), it is still possible to distinguish regular and chaotic orbits

with this measure as the chaotic orbits exhibit small values of dig. Lastly, the RTE remarkably

distinguishes regular and chaotic behavior for this system considering relatively short time series

(5000 data points) as it does for the standard map. Notably, these two metrics sidestep potential

challenges associated with evaluating the Jacobian matrix, as their computation does not rely

on it, and obtaining an analytical expression for the Jacobian matrix can at times be challenging

and, in certain cases, even impossible.

The source code to reproduce the results presented in this thesis is freely available in the Zen-

odo archive (158) as well as in the GitHub repostory (https://github.com/mrolims/hamiltonian-

systems).

https://github.com/mrolims/hamiltonian-systems
https://github.com/mrolims/hamiltonian-systems
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